HEAT CONDUCTIVITY OF POLYMERIC MICRO- AND NANOCOMPOSITES BASED ON POLYETHYLENE AT VARIOUS METHODS OF THEIR PREPARATION


  • N. M. Fialko Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine
  • R. V. Dinzhos Nikolaev National University named after V.A. Sukhomlinskiy
  • Yu. V. Sherenkovskiy Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine
  • N. O. Meranova Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine
  • R. A. Navrodskaya Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine
Keywords: polymeric micro- and nanocomposites, heat conductivity, methods of synthesis of composites, carbon nanotubes

Abstract

The results of a comparative analysis of the heat conductivity properties of polymer micro- and nanocomposites based on polyethylene obtained using methods based on the mixing of components in a dry form or a melt of a polymer matrix are submitted. For polyethylene, filled with carbon nanotubes and aluminum particles, data on the effect of methods of synthesis of composites on the values of percolation thresholds, the concentration dependence of the coefficients of heat conductivity, etc. are presented.

 

References

Han Z., Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review, Prog. Polym. Sci., 2011, Vol. 36, p. 914-944. (Eng.)

Wei Cui, Feipeng Du, Jinchao Zhao, Wei Zhang, Yingkui Yang, XiaolinXie, Yiu-WingMai. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silicacoated multiwalled carbon nanotubes, Carbon, 2011, Vol. 49,- p. 495-500. (Eng.)

Su Yong Kwon, Il Min Kwon, Yong-Gyoo Kim, Sanghyun Lee, Young-Soo Seo. A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena, Carbon, 2013, Vol. 55, p. 285-290. (Eng.)

Sheng Shen, Asegun Henry, Jonathan Tong, Ruiting Zheng, Gang Chen. Polyethylene nanofibres with very high thermal conductivities, Nature nanotechnology, 2010, Vol. 5, p. 251-255. (Eng.)

Spitalsky Zdenko, Tasis Dimitrios, Papagelis Konstantinos, Galiotis Costas. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science, 2010, Vol. 35, p. 357-401. (Eng.)

Hernandez-Montelongo J., Naveas N., Degoutin S., Tabary N., Chai F. , Spampinato V., Ceccone G., Rossi F., Torres-Costa V., Manso-Silvan M., Martel B. Porous silicon- cyclodextrin based polymer composites for drug delivery applications, Carbohydrate Polymers, 2014, Vol. 110, p. 238-252. (Eng.)

Diaz-Bleis D., Vales-Pinzon C., Freile-Pelegrin Y., Alvarado-Gil J.J. Thermal characterization of magnetically aligned carbonyl iron/agar composites, Carbohydrate Polymers, 2014, Vol. 99, p. 84-90. (Eng.)

Samanvaya S., Jennifer L. Schaefer, Zichao Yang, Zhengyuan Tu, Lynden A. Archer. Polymer- Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage, Advansed Material, 2014, Vol. 26, p. 201-234. (Eng.)

Sathyanarayana S., Hübner C. Thermoplastic Nanocomposites with Carbon Nanotubes, Structural Nanocomposites, 2013, p. 19-60. (Eng.)

Huang Y. Y., Terentjev E. M. Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties, Polymers, 2012, V. 4, p. 275-295. (Eng.)

Peng-Cheng Ma, Naveed A. Siddiqui, Gad Marom, Jang-Kyo Kim. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites: Part A, 2010, Vol. 41, p. 1345-1367. (Eng.)

Dinzhos R.V, Lysenkov E. A., Fialko N. M., Klepko V. V Influence of the method of filling the filler on the thermophysical properties of systems based on thermoplastic polymers and carbon nanotubes, Physical engineering the surface, 2014, Vol.12, №4, p. 446-453. (Ukr.)

Malezhik A.V., Sementsov Yu.I., Yanchenko V.V. Synthesis of carbon nanotubes by catalytic decomposition, Journal of Applied Chemistry, 2005, Vol.78, p. 938-943. (Rus.)

Lemesh N.V., Lysenkov E.A., Gomza Yu.P. and etc. Structure of multilayered carbon nanotubes obtained by catalytic decomposition of ethylene on nickel nanoparticles, Ukrainian Chemical Journal, 2010, Vol. 76, №5, p. 29-36. (Rus.)

Giovanni A. L. A Steady-State Apparatus to Measure the Thermal Conductivity of Solids, Int. J. Thermophys, 2008, Vol. 29, p. 664-677. (Eng.)

Abstract views: 81
PDF Downloads: 79
Published
2017-03-10
How to Cite
Fialko, N., Dinzhos, R., Sherenkovskiy, Y., Meranova, N., & Navrodskaya, R. (2017). HEAT CONDUCTIVITY OF POLYMERIC MICRO- AND NANOCOMPOSITES BASED ON POLYETHYLENE AT VARIOUS METHODS OF THEIR PREPARATION. Thermophysics and Thermal Power Engineering, 39(4), 21-26. https://doi.org/https://doi.org/10.31472/ihe.4.2017.03
Section
Heat and Mass Exchange Processes