THERMOPHYSICAL PROPERTIES OF POLYMER MICROAND NANOCOMPOSITES BASED ON POLYCARBONATE


  • A. A. Dolinskiy Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • N. M. Fialko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • R. V. Dinzhos Nikolaev National University. named after V.A. Sukhomlinskiy
  • R. A. Navrodskaya Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
Keywords: polymer microand nanocomposites, thermal properties, heat exchangers

Abstract

The results of experimental studies by the performed complex of thermophysical characteristics of created polymeric microand polycarbonate-based nanocomposites, which comprise from 0.2 to 10% carbon nanotubes and microparticles of aluminum are presented. Materials on the interpretation of the data based on the percolation theory are submitted. The possibilities of using of offered composites for the production of heat exchangers, focused on low-grade heat transfer and operating in hostile environments are previewed.

 

References

Han Z., Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review// Prog. Polym. Sci. 2011. Vol. 36. P. 914-944.

Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multiwalled carbon nanotubes / Wei Cui, Feipeng Du, Jinchao Zhao, Wei Zhang, Yingkui Yang, Xiaolin Xie, Yiu-Wing Mai // Carbon. 2011. Vol. 49. P. 495-500.

Electrical and Thermal Conductivity and Tensile and Flexural Properties of Carbon Nanotube/Polycarbonate Resins / Julia A. King. Michael D. Via, Jeffrey A. Caspary, Mary M. Jubinski, Ibrahim Miskioglu, Owen P. Mills, Gregg R. Bogucki // Journal of Applied Polymer Science. 2010. Vol. 118. P. 2512-2520.

Electrical and Thermal Conductivity and Tensile and Flexural Properties: Comparison of Carbon Black/Polycarbonate and Carbon Nanotube/Polycarbonate Resins / Julia A. King, Michael D. Via, Michelle E. King, Ibrahim Miskioglu, Gregg R. Bogucki // Journal of Applied Polymer Science. 2011. Vol. 121. P. 2273-2281.

A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena / Su Yong Kwon, Il Min Kwon, Yong-Gyoo Kim, Sanghyun Lee, Young-Soo Seo // Carbon. 2013. Vol. 55. P. 285-290.

Polyethylene nanofibres with very high thermal conductivities / Sheng Shen, Asegun Henry, Jonathan Tong, Ruiting Zheng and Gang Chen // Nature nanotechnology. 2010. Vol. 5. P. 251-255.

Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties / Zdenko Spitalsky, Dimitrios Tasis, Konstantinos Papagelis, Costas Galiotis // Progress in Polymer Science. 2010. Vol. 35. P. 357-401.

Malezhik A.V., Sementsov Y.I., Yanchenko V.V. Synthesis of carbon nanotubes by catalytic decomposition method// Journal of Applied Chemistry. 2005. V.78. P. 938-943.

The structure of multilayer carbon nanotubes produced by catalytic decomposition of ethylene on nickel nanoparticles / N.V Lemesh, A. Lysenkov, Y.P. Gomza et al. // Ukrainian Chemical Journal. 2010. V. 76, №5. P. 29-36.

Giovanni A.L. A Steady-State Apparatus to Measure the Thermal Conductivity of Solids // Int. J. Thermophys. 2008. Vol. 29. P. 664-677.

Zallen R. Physics of Non-crystal Solid. Beijing: Peking University Press, 1988. 232 p.

Stauffer D., Aharony A. Introduction to percolation theory. London: Taylor and Francis, 1994.318 p.

Abstract views: 368
PDF Downloads: 277
Published
2015-02-05
How to Cite
Dolinskiy, A., Fialko, N., Dinzhos, R., & Navrodskaya, R. (2015). THERMOPHYSICAL PROPERTIES OF POLYMER MICROAND NANOCOMPOSITES BASED ON POLYCARBONATE. Thermophysics and Thermal Power Engineering, 37(2), 12-19. https://doi.org/https://doi.org/10.31472/ihe.2.2015.02
Section
District and Industrial Heat Power