THE APPLICATION OF LATTICE BOLTZMANN TO FLOW ANALYSIS NANOFLUID IN THE CHANNEL BETWEEN COAXIAL CYLINDERS


  • A.O. Avramenko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 03057, Kiev, vul. Zhelyabova 2a, Ukraine
  • A.I. Tyrinov Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 03057, Kiev, vul. Zhelyabova 2a, Ukraine
  • N.P. Dmytrenko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 03057, Kiev, vul. Zhelyabova 2a, Ukraine
Keywords: nanofluid, centrifugal instability, curvilinear channel, heat- masstransfer, Taylor-Couette flow

Abstract

Taylor-Couette flow of nanofluids in curved channel, which is formed by two concentric cylindrical surfaces, is investigated. The flow is moved by rotating the inner cylindrical surface. It is analyzed the influence of following parameters on the critical Taylor numbers: the ratio of the radii of convex and concave walls, dimensionless parameters describing the temperature gradient, the relative density of nanoparticles, the ratio of Brownian diffusion and thermophoretic diffusion, Prandtl and Schmidt numbers.

References

1. Wenhua Y., France D.M. Routbort J.L., Choi S.U.S. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements // Heat Transfer Eng.. – 2008. V. 29, № 5. – P. 432–460.
2. Das S.K., Choi S.U.S., Patel H.E. Heat transfer in nanofluids: A review // Heat Transfer Eng. –2006. – V. 27. – P. 3–19.
3. Kakas K.S., Pramuanlaroenkij A. Review of convective heat transfer enhancment with nanofluids // Int. J. Heat Mass Transfer. – 2009. – V. 52. – P. 3187 – 3196.
4. Buschman M.H. Nanofluids in thermosyphons and heat pipes: Overview of recent experiments and modelling approaches // Int. J. Therm. Sci. – 2013. – V. 72. – P. 1–17.
5. Huming G., Huming A. Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids // Exp. Thermal Fluid Sci. – 2011. – V. 35, № 3. – P. 550–557.
6. Lai W. Stability of a revolution fluid with variable density in the presence of a circular magneticfluid // Physics of Fluids – 1962. – V. 25. – P. 560 – 566.
7. Avramenko A.A., Blinov. D.G., Shevchuk I.V. ISSN 0204-3602. Пром. теплотехника, 2016, т. 38, №3 9 Self-similar analysis of fluid flow and heat-mass transfer of nanofluids in boundary layer // Phys. Fluids. – 2011. – V. 23. P. 082002.
8. Avramenko A.A., Blinov. D.G., Shevchuk I.V., Kuznetsov A.V. Symmetry analysis and self-similar forms of fluid flow and heat-mass transfer in turbulent boundary layer flow of a nanofluid // Phys. Fluids. – 2012. –V. 24. P. 092003.
9. Avramenko A.A., Tyrinov A.I. Heat transfer at film condensation of stationary vapor with nanoparticles near a vertical plate // Appl. Therm. Eng. – 2014. – V.73, №. 1. – P. 389–396.
10. Avramenko A.A., Tyrinov A.I., Shevchuk I.V., Blinov. D.G. Heat transfer at film condensation of moving vapor with nanoparticles over a flat surface // Int. J. Heat Mass Transf. – 2015a. – V. 82. – P. 316–324.
11. Avramenko A.A., Tyrinov A.I., Shevchuk I.V., Blinov. D.G. Heat transfer in stable film boiling of a nanofluid over a vertical surface // Int. J. Therm. Sci. – 2015b. – V. 92. – P. 106–118.
12 Fedele L., Colla L., Bobbo S., Barison S., Agresti F. Experimental stability analysis of different water-based nanofluids // Nanoscale Research Letters – 2011. – V. 6. – P. 300.
13. Joni I.M., Purwanto A., Iskandar F., Okuyama K. Dispersion stability enhancement of titania nanoparticles in organic solvent using a bead mill process // Ind. Eng. Chem. Res. – 2009. – V.48, № 15. – P. 6916–6922.
14. Walowit J., Tsao.S., Diprima R. Stability of flow between arbitrarily spaced concentric cylindrical surfaces including the effect of a radial temperature gradient // J. Appl. Mech. – 1964. V. 30, № 4. – P. 585–593.
14. Mutabazi I., Gullerm R., Prigent A., Lepiller V., Malik S. Flow instabilities in a vertical differentially rotating cylindrical annulus with a radial temperature gradient // EUROMECH Colloquium. – 2011, – 21–23 June. V.52. – P. 300.
16. Pak. B.C., Cho Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submi-cron metallic oxide particles // Exp. Heat Transfer. – 1998. – V. 11. – P. 151–170.
17. Brian J.N. Application of two-dimensional cellular automaton lattice-gas models to the simulation of hydrodynamics / J. N. Brian. – University of Edinburgh. 1990. –190 p.
18. Maxwell J.B. Lattice Boltzmann methods for interfacial wave modelling. – University of Edinburgh. 1997. – 238 p.
19. P.L. Bhatnagar, E.P. Gross, M. Krook. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One- Component Systems // Physical Review. 1954. V.94. P. 511–525.

Abstract views: 69
PDF Downloads: 62
Published
2016-06-20
How to Cite
Avramenko, A., Tyrinov, A., & Dmytrenko, N. (2016). THE APPLICATION OF LATTICE BOLTZMANN TO FLOW ANALYSIS NANOFLUID IN THE CHANNEL BETWEEN COAXIAL CYLINDERS. Thermophysics and Thermal Power Engineering, 38(3), 3-9. https://doi.org/https://doi.org/10.31472/ihe.3.2016.01
Section
Heat and Mass Exchange Processes