SIMULATION OF FLOW AND HEAT TRANSFER IN BARE TUBES AT SUPERCRITICAL PRESSURE


  • N.M. Fialko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 03057, Kiev, vul. Zhelyabova 2a, Ukraine
  • I.L. Pioro Faculty of Energy Systems and Nuclear Science University of Ontario Institute of Technology 2000 Simcoe Str. N., Oshawa ON L1K 7K4 Canada
  • N.V. Maison Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 03057, Kiev, vul. Zhelyabova 2a, Ukraine
  • N.O. Meranova Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 03057, Kiev, vul. Zhelyabova 2a, Ukraine

Abstract

CFD-simulation results of flow and heat transfer for upward water flow in bare tubes at supercritical pressure are given. The data relating to the two-dimensional picture of the local thermophysical characteristics of the investigated processes are presented. The features of the pseudocritical transition front movement are considered. The results of methodological studies on verification of turbulence models are discussed.

References

1. Bazargan M. Forced convection heat transfer to turbulent flow of SCW in a round horizontal tube // PhD Thesis, University of British Columbia, Canada. – 2001. – 340 p. (Eng.)
2. Pioro I.L., Khartabil H.F., Duffey, R.B. Literature survey devoted to the heat transfer and hydraulic resistance of fluids at supercritical pressures and near critical pressures // AECL Report. – 2002. – 190 p. (Eng.)
3. Pioro I., Duffey R. Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications // ASME Press, New York, NY, USA. – 2007. – 334 p. (Eng.)
4. Hussam A. M. Zahlan. Derivation of a look-up table for Trans-critical heat transfer in water-cooled tubes // PhD Thesis, Ottawa-Carleton Institute for Mechanical and Aerospace Engineering Faculty of Engineering University of Ottawa, Canada. – 2015. – 252 p. (Eng.)
5. Kirillov P., Pometko R., Smirnov A., Grabezhnaia V. Experimental Study on Heat Transfer to Supercritical Water Flowing in 1- and 4-m-Long Vertical Tubes // Proc. GLOBAL’05, Tsukuba, Japan. – 2005.– p. 518. (Eng.)
6. Agranat V., Malin M., Pioro I., Abdullah R., Perminov V.A. CFD Modelling of Supercritical Water Heat Transfer in a Vertical Bare Tube Upward Flow // Proceedings of ICONE-23, May 17-21, Chiba, Japan. – 2015. – Paper 1163. – 11 p. (Eng.)
7. Cheng X., Kuang B., Yang Y.H. Numerical analysis of heat transfer in supercritical water cooled flow channels // Nuclear Engineering and Design. – 2007. – Vol. 237. – pp.240-252. (Eng.)
8. Farah A., Harvel G., Pioro I. Assessment of Fluent CFD Code as an Analysis Tool for Supercritical- Water Heat-Transfer Applications // Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermalhydraulics (NURETH-15), Pisa, Italy, May 12-15, 2013. – Paper 118. – 13 p. (Eng.)
9. Koshizuka S., Takano N., Oka Y. Numerical Analysis of Deterioration Phenomena in Heat Transfer to Supercritical Water // Int. J. Heat Mass Transfer. – 1995. – Vol. 38. – pp.3077-3084. (Eng.)
10. Yang J., Oka Y., Ishiwatari Y, Liu J., Yoo J. Numerical investigation of heat transfer in upward flows of supercritical water in circular tubes and tight fuel rod bundles // Nuclear Engineering and Design. – 2007. – Vol. 237. – pp.420-430. (Eng.)
11. Shang Z. CFD investigations of vertical rod bundles of supercritical water-cooled nuclear reactor // Nuclear Engi-neering and Design. – 2009, Vol. 239. – pp. 2562 – 2572. (Eng.)
12. Shih T.H., Liou W.W., Shabbir A., Yang Z., Zhu J. A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows: Model ISSN 0204-3602. Пром. теплотехника, 2016, т. 38, №3 19 development and validation // Computers and Fluids. – 1994. – Vol. 24(3). – рр. 227-238. (Eng.)
13. Launder B.E., Spalding, D.B. The numerical computation of turbulent Flows // Computer Methods in Applied Mechanics and Engineering. – 1974. – Vol. 3(2). – рр.269-289. (Eng.)
14. Abe K., Kondoh T., Nagano Y. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows - I. flow field calculations // International Journal of Heat and Mass Transfer. – 1994. – Vol. 37(1). – рр.139-151. (Eng.)
15. Lam C.K.G., Bremhorst K. A modified form of the k-epsilon model for predicting wall turbulence // ASME Journal of Fluids Engineering. – 1981. – Vol. 103. – рр.456-460. (Eng.)
16. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA Journal. – 1994. – Vol. 32(8). – рр.1598-1605. (Eng.)
17. Mokry S., Pioro I.L., Farah A., King K., Gupta S., Peiman W., Kirillov P. Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes // Nuclear Engineering and Design. – 2011. – Vol. 241. – pp. 1126−1136. (Eng.)
18. Grabehznaia, V.A., Kirillov, P.L About Calculation of Heat Transfer in the Tubes and Bundles of Rods at Flow of Supercritical Pressure Water // Obzor FEI-0297. Tsniiatominform. 2003. (Rus.)

Abstract views: 52
PDF Downloads: 48
Published
2016-06-20
How to Cite
Fialko, N., Pioro, I., Maison, N., & Meranova, N. (2016). SIMULATION OF FLOW AND HEAT TRANSFER IN BARE TUBES AT SUPERCRITICAL PRESSURE. Thermophysics and Thermal Power Engineering, 38(3), 10-19. https://doi.org/https://doi.org/10.31472/ihe.3.2016.02
Section
Heat and Mass Exchange Processes