VELOCITY FIELD AND VORTEX MOTION INSIDE THE HALF-CYLINDRICAL TRENCH


  • V.A Voskoboinick Institute of Hydromechanics of the National Academy of Sciences of Ukraine, str. Zhelyabova, 8/4, Kyiv, 03680, Ukraine
  • A.V. Voskoboinick Institute of Hydromechanics of the National Academy of Sciences of Ukraine, str. Zhelyabova, 8/4, Kyiv, 03680, Ukraine
Keywords: velocity field, vortex structure, halfcylindrical trench

Abstract

The experimental research results of the features of formation and development of the coherent vortical structures in the half-cylindrical trench and also statistical characteristics of velocity field are submitted. The scales and location of the coherent vortical structures inside of the trench are determined. The influence of the vortex motion in the cavity on a boundary layer above a flat surface with the local half-cylindrical trench is shown.

References

1. Body flow control with vortex cells in supplement to aircraft of integral design (numerical and physical simulation) Ed. A.V. Ermishin and S.A. Isaev. – M.: SPb., 2001. – 360 p. (Rus.)
2. Khalatov А.А. Heat transfer and hydrodynamics about surface cavities (dimples). – К.: ITTF NASU, 2005. – 76 p. (Rus.)
3. Gortyschov Yu.F., Popov I.А., Olimpiev V.V., Stchelchkov А.V., Kaskov S.I. Heat-hydraulical efficiency of perspective methods of intensification of heat emission in the channels of heat-exchange equipment. – Kazan: Center of innovative technologies, 2009. – 531 p. (Rus.)
4. Voskoboinick V.A. Space-time characteristics of coherent structures, velocity and pressure fields into the dimpled vortex generators: Thesis doctor degree of engineering sciences by specialty 01.02.05 – mechanics of fluid, gas and plasma / Institute of Hydromechanics of NASU, Kyiv, 2013. – 40 p. (Ukr.)
5. Voskoboinick V., Kornev N., Turnow J. Study of near wall coherent flow structures on dimpled surfaces using unsteady pressure measurements // Flow Turbulence Combust. – 2013. – Vol. 90, No. 4. – P. 709 – 722.
6. Lin J. – C., Rockwell D. Organized oscillations of initially turbulent flow past a cavity // AIAA J. – 2001. – 39, No. 6. – P. 1139 – 1151.
7. Cabell R. H., Kegerise M. A., Cox D. E., Gibbs G. P. Experimental feedback control of 22 ISSN 0204-3602. Пром. теплотехника, 2016, т. 38, №4 ТЕПЛО- И МАССООБМЕННЫЕ ПРОЦЕССЫ flow induced cavity tones // AIAA Pap. – 2002. – No. 2497. – P. 1 – 10.
8. Rossiter J.E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds // Aeronautical Research Council. – 1964. – Rep. Mem. No. 3438. – P. 1 – 36.
9. Gharib M., Roshko A. The effect of flow oscillations on cavity drag // J. Fluid Mech. – 1987. – Vol. 177. – P. 501 – 530.
10. Voskoboinick V.A., Voskoboinick A.V. Velocity fluctuations inside cross-streamlined halfcylindrical cavity // Bulletin of Donetsk University, Series A: Natural Sciences. – 2012. – No. 2. – P. 25 – 30. (Rus.)
11. Turick V.N., Voskoboinick V.A., Voskoboinick A.V. Influence of half-cylindrical cavity on integral characteristics of wall boundary layer // Bulletin of NTUU “KPI”. Mechanical Engineering. – 2012. – Vol. 64. – P. 47 – 55. (Ukr.)
12. Afanasiev V.N., Veselkin V.Yu., Leontiev A.I. ets. Hydrodynamics and heat transfer by stream of single cavities on unconfigured state smooth surface. No. 2-91, pt. 1. – M.: MGTU, 1991. – 56 p. (Rus.)
13. Voskoboinick V. A., Voskoboinick A. V. Circulation flow in the cross-streamlined halfcylindrical trench // Bulletin of Donetsk University, Series A: Natural Sciences. – 2012. – No. 1. – P. 45– 50. (Ukr.)
14. Turick V. N., Babenko V. V., Voskoboinick V. A., Voskoboinick A. V. Vortex motion in the halfcylindrical cavity on a plate // Industrial Hydraulics and Pneumatics. – 2011. – Vol. 33, No. 3. – P. 23 – 27. (Rus.)
15. Rockwell D. Vortex-body interactions // Annu. Rev. Fluid Mech. – 1998. – Vol. 30. – P. 199 – 229.

Abstract views: 290
PDF Downloads: 235
Published
2016-08-20
How to Cite
Voskoboinick, V., & Voskoboinick, A. (2016). VELOCITY FIELD AND VORTEX MOTION INSIDE THE HALF-CYLINDRICAL TRENCH. Thermophysics and Thermal Power Engineering, 38(4), 13-22. https://doi.org/https://doi.org/10.31472/ihe.4.2016.02
Section
Heat and Mass Exchange Processes