PERSPECTIVE RESEARCHES OF INNOVATIVE TECHNOLOGIES OF NUCLEAR POWER PLANTS


  • A.A. Avramenko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 03057, Kiev, vul. Zhelyabova 2a, Ukraine
  • М.М. Kovetskaya Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 03057, Kiev, vul. Zhelyabova 2a, Ukraine
  • A.V. Kravchuk Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 03057, Kiev, vul. Zhelyabova 2a, Ukraine
  • Yu.Yu. Kovetskaya Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 03057, Kiev, vul. Zhelyabova 2a, Ukraine
Keywords: new generation of nuclear reactors, helium coolant, water supercritical pressure, thermophysical studies

Abstract

A review of perspective nuclear power technologies is presented for solving the problems of improving the safety and economic efficiency. A role of thermal physical investigation for improving light-water reactors is shown.

References

1. Oshima K., Okubo O. The condition and prospects of development of nuclear power plants // Atomic energy technology overseas. − 2010. − №12. − P.20 – 24. (Rus.)
2. Pioro I., Kirillov P. Current status of electricity generation at nuclear power plants/ http://www.formatex.info/energymaterialbook/book/. − 2013. − P.806 – 817.
3. Tyunin I.B. The evolutionary and innovative nuclear reactors for the near and distant future. Part 1 // Atomic energy technology overseas. − 2005. − №1. − С.3 − 10. (Rus.)
4. Kovetskiy V.M., Kovetskaya M.M. Directions of development of nuclear power plant technology. Light water reactors // Problems of general power industry. − 2006. − №13. − С.29 – 37. (Rus.)
5. Kovetskiy V.M., Kovetskaya M.M. Directions of development of nuclear power plant technology. Part 11. Heavy water, liquid metal reactors and gas // Problems of general power industry. − 2006. − №14. − P.14−19 (Rus.)
6. Belozorov D.P., Davydov L.N. Current problems of nuclear power: III and III+ generations advanced reactors // Kharkiv University Herald. − 2007. − №777. − P. 3 – 32. (Rus.)
7. Аlekseev P.N., Haharynskyy А.Yu., Ponomarev-Stepnoy N.N., Sidorenko V.А. Demands for nuclear power plants in XXI c. // Nuclear energy . − 2000. − V.88, №1 − P. 3 – 14. (Rus.)
8. Paton B.Ye., Neklyudov I.M., Krasnorutskyy V.S. The future of nuclear power determines tasks of Ukraine’s nuclear fuel cycle // ISSN 1562-6016 VANT. – 2013. − №5(87). – P. 3 – 10. (Rus.)
9. Pioro I., Kirillov P. Generation IY Nuclear Reactors as a Basis for Future Electricity Production in the World / http://www.formatex.info/energymaterialbook/book/ − 2013 − P. 818 − 830.
10. Tyunin I.B. The evolutionary and innovative nuclear reactors for the near and distant future. Part 2 // Atomic energy technology overseas. − 2005. − №2. − С.3 − 11. (Rus.)
11. Matsui K. Trends in development of the next generation of reactors and new reactors in Japan // Atomic energy technology overseas. – 2004. − №4. – Р. 24 – 37. (Rus.)
12. Pechera Yu. International initiatives in the development of nuclear power and fuel cycle of new generations // Atomic energy technology overseas. – 2005. − №7. – Р. 21 – 26. (Rus.)
13. Kolochko V., Avramenko A., Kovetskiy V., Kovetskaya M. Prospects for the use of hightemperature gas reactors // Energoatom Ukraine. – 2009. − №2. – Р. 16 – 19. (Rus.)
14. Bronnikov V.A. NPP on the basis of the gas turbine unit with helium reactor (GT-MHR) coolant // Atomic energy technology overseas. − 2003. − №6. − Р.20 − 22. (Rus.)
15. Avramenko A.A., Basok B.I., Dmitrenko N.P., Kovetskaya M.M., Tyrinov A.I., DavydenkoB.V. Renormalization group analysis of turbulence. – K.: Expres. – 2013. – 299p. (Rus.)
16. Dmitrenko N.P. Numerical investigation of heat transfer and hydrodynamics in the model core bulktype high-temperature gas-cooled reactors under unsteadiness //// Industrial heat engineering. – 2012. – V.34, №1. – Р.48 – 52. (Rus.)
17. Dmitrenko N.P. The study of hydrodynamic and thermal characteristics in the fuel assembly of high ISSN 0204-3602. temperature gas-cooled reactors // Industrial heat engineering. – 2009. – V.31, №4. – Р.56 – 61. (Rus.)
18. Kovetskaya M.M., Dmitrenko N.P., Skitsko A.I., Kondratieva E.A. Heat transfer processes in the flow of helium and the supercritical water in the fuel assembly // Industrial heat engineering.– 2014. – V.36, №2. – Р.46 – 53. (Rus.)
19. Kirillov P.L. Water-cooled reactors, supercritical water // Teploenergetika. – 2008. − №5. – Р.2 – 5. (Rus.)
20. Cao L., Oka Y., Ishiwatari Y., Shang Z. Core Design and Subchannel Analysis of a Superfast Reactor// Journal of Nuclear Science and Technology. – 2008. –V.45, № 2. – P.138–148.
21. Semechkov Yu.M., Duhovensky A.S., Alekseev P.N. Problems and prospects of the new generation of reactors with supercritical pressure // Teploenergetika. – 2008. − №5. – Р.6 – 11. (Rus.)
22. Glebov A.P., Klushin A.V. The reactor with the fast-neutron resonance spectrum cooled supercritical water at a two-way movement of the coolant circuit // Nuclear energy. – 2006. – V.100, №5. – С.349 – 355. (Rus.)
23. Dragunov Yu.G., Ryzhov S.B., Nikitenko M.P. Water-cooled reactors with supercritical parameters (WVER-SKD) − prospective reactors of the 4th generation / Conference proceedings "Ensuring the safety of nuclear power plants with VVER" Russian, Podolsk. – 2007. (Rus.)
24. Smirnov V.P., Papandin M.V., Loninov A.Y., Vanyukova G.V., Afonin S.Yu. Application of CFD - code to the calculation of heat transfer in the reactor with supercritical parameters / Nuclear energy. − 2011. – V.111, № 4.– С.196 – 201. (Rus.)
25. Blinkov V.N., Gabaraev B.A., Melikhov O.I., Soloviev S.L. Unsolved problems of heat and mass transfer of water-cooled reactor plants with supercritical coolant parameters. – M: FGUP NIKIET. − 2008. – 85p. (Rus.)
26. Avramenko A.A., Kondratieva E.A., Kovetskaya M.M., Tyrinov A.I. Hydrodynamics and heat flow with supercritical parameters in the vertical assembly of fuel elements // Journal of Engineering Physics. – 2013. – V.86, №4. – С.760 – 767. (Rus.)
27. Petrushin V.V., Gureeva L.V., Fadeev Yu.P., Shmelev I.V., Lepekhin A.N., Udalischev S.V. Prospects for the development of nuclear power plants with reactors of low and medium power / Nuclear power station small / Ed. Sarkisov /. – 2012. – V.2 − P.36 – 49. (Rus.)
28. Jong-Kyun Park. Nuclear power plants with advanced reactors of low and medium power - energy potential option for a specific function: Opening remarks by MAGATE / Nuclear power station small / Ed. Sarkisov /. – 2012. – V.2 − P.10 –13. (Rus.)
29. Kidd S. SMRs – what are their prospects? // Nuclear Engineering International. – 2010. –V.66, № 677. – P.12 – 13.
30. Isayev A. Prospects for the use of low-power reactors with a long duration of the campaign // Atomic energy technology overseas. – 2007. – №6. – С.11 – 18. (Rus.)
31. Kovetskaya M.M., Lavrik V.M., Kovetskiy V.M. Problems and prospects of small and medium-sized nuclear reactors // Total problems of zagalnoї power industry. – 2003. – №9. – С.32 – 36. (Rus.)
32. Fetterman R., Smith M., Harkntss A., Taylor C. Westinghouse SMR// Nuclear Engineering International. – 2012. – № 692. –P.16 – 19.
33. Efanov A.D., Kalyakin S.G., Sorokin A.P. Thermal studies in support of projects of nuclear reactors of new generation // Nuclear energy. – 2012. – V.112, №1. – P.12 – 18. (Rus.)
34. Kirillov P.L. The main directions of research in the field of thermal hydraulics of nuclear power plants Research (Part 1) // Teploenergetika. − 2005. – №3. – С.15 – 19. (Rus.)
35. Kirillov P.L. The main directions of research in the field of thermal hydraulics of nuclear power plants Research (Part 2) // Teploenergetika. − 2005. – №5. – С.47 – 52. (Rus.)
36. Gulevich A.V., Efanov A.D., Kirillov P.L., Kozlov F.A. The main issues of Thermal Physics of nuclear power // Nuclear energy. − 2004. –V.96, №5. – С.380 – 387. (Rus.)
37. Antipov V.G. Experimental determination of the boundaries of the field of nonequilibrium boiling in the steam generating channel // Industrial heat engineering. − 2011. –V.33, №6 . – С. 25–31. (Rus.)
38. Antipov V.G. Heat transfer in a nonequilibrium boiling water in a vertical tube // Industrial heat engineering. − 2015. –V.39, №3. – С. 16 –23. (Rus.)
39. Avramenko A.A., Kondratieva E.A., Kovetskaya M.M., Tyrinov A.I. Influence of regime parameters on the enthalpy of the cross flows between cell bars beam // Industrial heat engineering. − 2015. – V.37, №3. – С. 16 –23. (Rus.)
40. Kovetskaya M.M., Kolesnichenko Yu.M., Bogorosh A.T. Features of unsteady heat transfer crisis in the vertical steam-generating channels // Industrial heat engineering. − 2007. –V.29, №1. – С.43 – 48. (Rus.)
41. Kovetskaya M.M., Domashev V.E., Kovetskaya Yu.,Yu. The study of heat transfer crisis in the steam generating channel at pounce power // Industrial heat engineering. − 2012. –V.34, №6. – С.53 – 57. (Rus.)
42. Dolinsky A.A., Kovetskaya M.M., Skitsko A.I., Avramtnko A.A., Basok B.I. Nonstationary Heat Transfer Crisis in Annular Dispersed Flows // Journal of Engineering Thermo physics. –2008. –V.17, №2. – P.126 – 129.
43. Skitsko A.I., Kovetskaya M.M., Tyrinov A.I. Numerical study of heat and mass transfer in a vertical steam generating channel under the influence of disturbing factors // Industrial heat engineering. − 2013. –V.35, №6. – С.9 – 15. (Rus.)
44. Kovetskaya M.M., Kondratieva E.A., Skitsko A.I. Effect of uneven heat load on the local characteristics of the flow during flow of water in the steam generating channel and the fuel assemblies // Industrial heat engineering. − 2014. –V.36, №3. – С.38 – 44. (Rus.)
45. Dmitriev A.S. The thermophysical problems nanoenergy. Part 2 // Teploenergetika. − 2011. – №4. – С.29 – 36. (Rus.)
46. Ramesh G., Prabhu N.K. Review of thermophysical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment // Nanoscale Research Letters. – 2011. – 6:334. – P.1–15.
47. Bang I.C., Chang S.H. Boiling Heat transfer performance and phenomena of Al2O3 – water nanofluids from a plain surface in a pool // International Journal of Heat and Mass Transfer. –2005. – №48. – P. 2407 – 2419.
48. Wang X.Q, Mujumdar A.S. Heat transfer characteristics of nanofluids: a review // International Journal of Thermal Sciences. –2007. – №46. – P.1– 19.
49. Das S.K., Choi S.U.S., Patel H.E. Heat Transfer in Nanofluids – A Review // Heat Transfer Engineering. –2006. –V.27, №10. – P.3–19.
50. Kim H., DeWitt G., McKrell T., Buongiorno J., Hu L.W. On the quenching of steel and zircaloy spheres in water- based nanofluids with alumina, silica and diamond nanoparticles // International Journal of Multiphase Flow. – 2009. – №35. – P.427 – 438.
51. Hadad K., Hajizadeh A., Jafarpour K., Hanapol B.D. Neutronic study of nanofluids application to VVER-1000 // Annals of Nuclear Energy. –2010. – V.37, №11. –P.1447–1455.
52. Avramenko A.A., Tyrinov A.I. Heat transfer at film condensation of moving vapor with nanoparticles over a flat surface // International Journal of Heat and Mass Transfer. – 2015. – №.82. – P.316 – 324. – Impact Factor: 2.809.
53. Avramenko A.A., Tyrinov A.I. Heat transfer in stable film boiling of a nanofluid over a vertical surface // International Journal of Thermal Sciences. – 2015. – №.92. – P.106 –118. – Impact Factor: 3.156.
54. Avramenko A.A., Tyrinov A.I. Thermocapillary instability in an evaporating two-dimensional thin layer film // International Journal of Heat and Mass Transfer. – 2015. – №.91. –P.77–88. – Impact Factor: 2.809.

Abstract views: 39
PDF Downloads: 40
Published
2016-08-20
How to Cite
Avramenko, A., KovetskayaМ., Kravchuk, A., & Kovetskaya, Y. (2016). PERSPECTIVE RESEARCHES OF INNOVATIVE TECHNOLOGIES OF NUCLEAR POWER PLANTS. Thermophysics and Thermal Power Engineering, 38(4), 47-62. https://doi.org/https://doi.org/10.31472/ihe.4.2016.05