• M.M. Kovetskaya Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
Keywords: nanofluids boiling, heat transfer, critical heat flux


The paper analyzes the research results of heat transfer crisis during boiling of nanofluids. The effect of the nanoparticle concentration, roughness and wettability of the heated surface on the increase in the critical heat flux is studied.


1. Wang X.Q, Mujumdar A.S. Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences, 2007, 46, P.1-19
2. Das S.K., Choi S.U.S., Patel H.E. Heat Transfer in Nanofluids - A Review. Heat Transfer Engineering, 2008, 27(10), P.3-19

3. Cheng L., Filho E.P.B., Thome J.R. Nanofluid Two-Phase Flow and Thermal Physics: A New Research Frontier of Nanotechnologe and Its Challenges. Journal of Nanoscifnct and Nanotechnologe, 2008, V.8, N 8, P.1-18

4. Ramesh G., Prabhu N.K. Review of thermophysical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment. Nanoscale Research Letters, 2011, 6:334, P.1-15

5. Surtaev A.S., Serdyukov VS., Pavlenko A.N. Nanotehnologii v teplofizike: teploobmen i krizisnyie yavleniya pri kipenii. [Nanotechnologies in thermophysics: heat transfer and crisis phenomena during boiling]. Rossiyskie nanotehnologii [Russian nanotechnologies], 2016, №11-12, P. 18-22 (RUS.)

6. Bang I.C, Buongiorno J., Hu L.W., Wang H. Measurement of Key Pool Boiling Parameters in Nanofluids for Nuclear Applications. Journal of Power and Energy Systems, 2008, v.2, № 1, P. 340-351

7. Bang I.C., Chang S.H. Boiling Heat transfer performance and phenomena of A1203 - water nanofluids from a plain surface in a pool. International Journal of Heat and Mass Transfer. 2005, 48, P. 2407-2419

8. You S.M., Kim J.H., Kim K.H. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Applied Physics Letters, 2003, 83, № 16, P. 3374-3376

9. BangI.C., ChangS.H., Baek W.P. Visualization of a Principle Mechanism of Critical Heat Flux in Pool Boiling. Int. J. Heat Mass Transfer. 2005, V.48(25-26), P. 5371-5385

10. Hegde R.N., Rao S.S., Reddy R.P. FlowVisualization, Critical Heat FIUX Enhancement, and Transient Characteristics in Pool Boiling Using Nanofluids. Journal of ASTM International, 2012, V.9, № 5, P. 1-16

11. Taylor R.A., Phelan P.E. Pool boiling of nanofluids: comprehensive review of existing data and limited new data. Int. J. Heat Mass Transfer, 2009, 52, P. 5339-5347

12. Rohsenow W.M. A method of correlating heat transfer data for surface boiling liquids. Trans. FSME, 1952, 74, P.969-976

13. Li X., Cheung S.C.P., Tu J. Nucleate boiling of dilute nanofluids - Mechanism exploring and modeling. Int. J. of Thermal Sciences, 2014, 84, P. 323-334

14. Pioro I.L., Rohsenow W.M., Doerffer S.S. Nucleate pool-boiling heat transfer. 1 review of parametric effects of boiling surface. Int. J. Heat Fluid Flow, 2004, 47, P. 5033-5044

15. Li X.D., Li K., Tu J.Y., Buongiorno J. On two-fluid modeling of nucleate boiling of dilute nanofluids. Int. J. Heat Mass Transf., 2014, 69, P. 443-450

16. Phan H.T., Caney N., Marty P., Colasson S., Gavillet J. Surface wettability control by nanocoating : the effects on pool boiling heat transfer and nucleation mechanism. Int. J. Heat MASS Transf., 2009, 52, P.5459-5471

17. Kwark S.M., Kumar R., Moreno G., Yoo J., You S.M. Pool boiling characteristics of low concentration nanofluids. Int. J. Heat Mass Transf., 2010, 53, P. 972-981

18. Kim S.J., BangI.C., Buongiorno J., Hu L.W Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transf., 2007, 50, P.4105-4116

19. Okawa T., Takamura M., Kamiya T. Boiling time effect on CHF enhancement in pool boiling of nanjfluids. Int. J. Heat MASS Transf, 2012, 55, P.2719-2725

20. Shustov M.V Issledovanie kipeniya V mikrokanale S pokryitiem iz nanochastits.[The study of boiling in a microchannel coated with nanoparticles] , MOSCOW, 2015, 119P. (RUS.)

21. Kandlikar S.G. A Theoretical Model to Predict Pool Boiling CHF Incorporationg Effects of Contact Angle Orientation. J. Heat Transfer, 2001, V.123, №6, P.1071-1079

22. Kim H. Kim M. Experimental study of the Characteristics and Mechanism of Pool Boiling CHF Enhancement Using Nanofluids. J. Heat Mass Transfer, Special Issutr, 2009, 45, P.991-998

23. Tolubinskiy VI. Teploobmen pri kipenii [Heat transfer at boiling point]. Kiev, Naukova dumka [Kyiv, scientific thought], 1980, 316P. (RUS.)

24. Zeygarnik Yu.A. Pererodivsheesya kipenie i intensifikatsiya teplootdachi [Revived boiling and intensification of heat transfer]. Teplofizika vyisokih temperatur [Thermal physics of high temperatures], 2001, V. 39, №3, P.479-487. (RUS.)

25. Kim H., Truond B., Buongiorno J., Hu L-W On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena. Applied Physics Letters, 2011, 98, 083121

26. Tu J.Y., Yeoh G.H. On numerical modeling of low- pressure subcooled boiling flows. Int. J. Heat Mass Transf, 2002, 45, P.1197-1209

27. Yeoh G.H., Tu J.Y. Population balance modeling for bubbly flows with heat and mass transfer. Chem. Eng. Sci, 2004, 59, P.3125-3139

28. Li X.D., Wei W., Wang R.S., Shi J.M. Numerical and experimental investigation of heat transfer on heating surface during subcooled boiling flow of liquid nitrogen. Int. J. Heat Mass Transf. 2009, 52, P.1510-1516

29. Yeoh G.H., Cheung S.C.P., Tu J.Y, Ho M.K.M. Fundamental consideration of wall heat partition of vertical subcooled boiling flows. Int. J. Heat Mass Transf., 2008, 51, P.3840-3853

30. Basu N., Warrier G.R., Dhir V.K. Wall heat flux partitioning during subcooled flow boiling: part 1. J. Heat Transf. 2005, 127, P.131-140

31. Li X., Cheung S.C.P., Tu J. Nucleate boiling of dilute nanofluids - Mechanism exploring and modeling. Int. J. of Thermal Sciences, 2014, 84, P.323-334

32. Avramenko A.A., Shevchuk I.V., Tyrinov A.I., Blinov D.G. Heat transfer in stable film boiling of a nanofluid over a vertical surface. Int. Journal of Thermal Sciences, 2015, 92, P.106-118

33. Avramenko A.A., Shevchuk I.V., Abdallah S., Blinov D.G.,Yarmand S., Tyrinov A.I. Symmetry analysis for film boiling of nanofluids on a vertical plate using a nonlinear approach. Jour, of Molecular Liquids, 2016, № 223, P.156-164

34. Avramenko A.A., Kovetskaya M.M., Tyirinov A.I. Osobennosti teploobmena pri kipenii nanozhidkosti [Features of heat transfer during boiling of nanofluids]. Promyishlennaya teplotehnika [Industrial heat engineering], 2017, V.39, №3, P.25-34. (RUS.)

Abstract views: 42
PDF Downloads: 46
How to Cite
Kovetskaya, M. (2018). FEATURES OF HEAT TRANSFER CRISIS ON HEATING SURFACE DURING BOILING OF NANOFLUIDS. Thermophysics and Thermal Power Engineering, 40(1), 27-35. https://doi.org/https://doi.org/10.31472/ihe.1.2018.04
Heat and Mass Exchange Processes