• Y.Y. Kovetska Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zhelyabova, 2a, Kyiv, 03680 Ukraine
Keywords: microchannel, slip length, hydrophobic surface


Research review of phenomenon for slip flow in micro and nanocannels is presented in the paper. The analysis of theoretical and experimental data characterizing the slip length is carried out. In slip flow in microchannels the slip length is affected by the contact angle of the liquid with the surface, shear stress, pressure, dissipative heating, the amount and nature of the dissolved gas in the liquid, electrical characteristics, surface roughness. Studies of flow in microchannels with hydrophobic walls, which are based on molecular dynamics, showed that the slip length has order of 20 nm. This is much less than the values observed in the experiment. The introduction of an effective (apparent) slip length suggests the existence of a thin layer of gas bubbles near the hydrophobic surface or liquid layer with low value of viscosity and density. Since the idealized model for the total coverage of a hydrophobic surface by gas bubbles gives, as a rule, overestimated values of the slip length in comparison with experimental ones, some researchers consider the inhomogeneous coating of the wall by gas bubbles. In this case, the effect of a layer with a lower viscosity on the slip length turns out to be weaker.


1. Konovalov D.A., Lazarenko I.N, Kozhuhov N.N, Drozdov I.G. Razrabotka metodov intensifikatsii teploobmena v mikrokanalnyih teploobmennikah gibridnyih sistem termostabilizatsii [Development of methods for intensifying heat exchange in microchannel heat exchangers of hybrid thermal stabilization systems], Vestnik Voronezhskogo gosudarstvennogo universiteta [Bulletin of Voronezh State University], 2016, V.12, №3, pp. 21 – 30. (Rus).
2. Sauret A., Barney E.C., Perro A., Villermaux E., Stone H.A. Clogging by sieving in microchannels: Application to the detection of contaminants in colloidal suspensions. Applied Physics Letters, 2014, V. 105(7). –074101.
3. Liedtke A.K., Scheiff F., Bornette F., Philippe R., Agar D.W., and Bellefon C. Liquid–Solid Mass Transfer for Microchannel Suspension Catalysis in Gas–Liquid and Liquid–Liquid Segmented Flow. Ind. Eng. Chem. Res., 2015, V.54 (17), pp. 4699 – 4708.
4. Avramenko A. A., Tyrinov A. I., Shevchuk I. V. An analytical and numerical study on the start up flow of slightly rarefied gases in a parallel-plate channel and a pipe. Phys. Fluids, 2015,V.27, P. 042001-1 - 042001-18.
5. Avramenko A. A., Tyrinov A. I., Shevchuk I. V. Theoretical investigation of steady isothermal slip flow in a curved microchannel with a rectangular cross-section and constant radii of wall curvature. European Journal of Mechanics B/Fluids, 2015, V.54, P. 87– 97.
6. Avramenko A. A., Tyrinov A. I., Shevchuk I. V. Start-up slip flow in a microchannel with a rectangular cross section. Theor. Comput. Fluid Dyn., 2015, V.29, P. 351 – 371.
7. Avramenko A. A., Tyrinov A. I., Shevchuk I. V., Dmitrenko N. P., Kravchuk A. V., Shevchuk V. I. Mixed convection in a vertical flat microchannel. International Journal of Heat and Mass Transfer, 2017, V.106, P. 1164 –1173.
8. Avramenko A. A., Tyrinov A. I., Shevchuk I. V., Dmitrenko N. P., Kravchuk A. V., Shevchuk V. I. Mixed convection in a vertical circular microchannel. International Journal of Thermal Sciences, 2017, V.121, P. 1 – 12.
9. Avramenko A. A., Shevchuk I. V., Kravchuk A. V. Turbulent incompressible microflow between rotating parallel plates. European Journal of Mechanics B/Fluids, 2018, V.71, P. 35 – 46.
10. Lauga E., Brenner M. P., Stone H.A. Microfluidics: The No-Slip Boundary Condition. Handbook of experimental fluid dynamics, New York: Springer, 2006, 27р.
11. Eygkel Y. Proskalzyivanie zhidkosti v mikro I nanoflyuidike: nedavnie issledovaniya i ih vozmozhnyie primeneniya [Slippage of liquid in micro and nanofluidics: recent studies and their possible applications], Nauchnyie trudyi NIPI Neftegaz GNKAR [Scientific works of NIPI Neftegaz GNKAR], 2010, №4, P.62 – 66. (Rus).
12. Gad-el-Hak M. The fluid mechanics of microdevices. J. Fluids Engineering, 1999, V. 121, №1, P. 5 – 33.
13. Tretheway D.C., Meinhart C.D. A generating mechanism for apparent fluid slip in hydrophobic microchannels. Reprinted with permission from, Physics of Fluids, 2004, V. 16, 1509
14. Belyaev A.V. Gidrodinamicheskie I elektrokineticheskie techeniya vblizi supergidrofibnyih poverhnostey [Hydrodynamic and electrokinetic flows near superhydrophilic surfaces], Dissertatsiya na soiskanie kand. fiz-mat nauk [Thesis for the Cand. of Phys.-Mat.l Sciences], Moscow, 2012, 125p. (Rus).
15. Tretheway D.C., Meinhart C.D. Apparent fluid slip at hydrophobic microchannel walls. Physics of Fluids, 2002, V. 14, №3, рр. 9 - 13.
16. VinogradovaO.I.Osobennostigidrodinamicheskogo i ravnovesnogo vzaimodeystviya gidrofobnyih poverhnostey [Features of hydrodynamic and equilibrium interaction of hydrophobic surfaces], Dissertatsiya na soiskanie kand.fiz-mat nauk [Thesis for the Cand. of Phys.-Mat.l Sciences], Moscow, 2000, 169p. (Rus).
17. Tyrell J., Attard P. Images of nanobubbles on hydrophobic surfaces and their interactions. Physical Review Letters, 2001, V.87, №17, P.176104-1– 176104-3.
18. Zhu Y., Granick S. Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev. Lett., 2001,V.87, №9, рр. 096105-1 – 096105-4.
19. Pit R., Hervet H., Leger L. Direct experimental evidence of slip in hexadecane: Solid interfaces. Phys. Rev. Lett., 2000, V.85,№5, рр. 980-983.
20. Kashaninejad N., Chan W.K., Nguyen N-T. Analytical Modeling of Slip Flow in Parallel – plate Microchannels. Micro and Nanosystems, 2013, V.5, №4, pp. 1 – 8.
21. Hendy S.C., Lund N.G. Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip. Jour. Of Physic Condensed Matter, 2009, V.21, pp. 144202 –144205.
22. Lauga E., Stone H.A. Effective slip in pressure-driven Stokes flow. J. Fluid Mech, 2003, V.489. – pp. 55–77.
23. Schnell E. Slippage of water over nonwettable surfaces. J. Appl. Phys, 1956, V.27, pp. 1149 – 1152.
24. Churaev N. V., SobolevV.D., Somov A.N. Slippage of liquids over lyophobic solid surfaces. J. Colloid. Interface Sci, 1984, V.97, pp. 574 – 581.
25. Watanabe K., Udagawa Y., Udagawa H. Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech, 1999, V.381, pp. 225 – 238.
26. Cheng J.-T., Giordano N. Fluid flow through nanometre-scale channels. Phys. Rev., 2002, E 65, 031206.

Abstract views: 58
PDF Downloads: 49
How to Cite
Kovetska, Y. (2018). ESTIMATION OF THE SLIP LENGTH IN THE FLOW OF LIQUID IN MICRO-CHANNELS. Thermophysics and Thermal Power Engineering, 40(2), 12-19.
Heat and Mass Exchange Processes