INCREASE OF ECOLOGICAL EFFECTIVENESS OF COMPLEX HEAT-RECOVERY SYSTEMS FOR BOILER PLANTS


  • N. M. Fialko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zheliabova, 2a, Kyiv, 03680, Ukraine
  • R. A. Navrodskaya Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zheliabova, 2a, Kyiv, 03680, Ukraine
  • G. A. Presich Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zheliabova, 2a, Kyiv, 03680, Ukraine
  • G. A. Gnedash Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zheliabova, 2a, Kyiv, 03680, Ukraine
  • S. I. Shevchuk Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zheliabova, 2a, Kyiv, 03680, Ukraine
  • O.V. Martiuk Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zheliabova, 2a, Kyiv, 03680, Ukraine
Keywords: gas-fired boilers, complex heat-recovery systems, blown air humidifying, decrease of nitrogen oxides

Abstract

It is revealed that the humidifying of blown air in complex heat recovery systems of gas-fired boiler plants provides the significant reduction in the concentration of nitrogen oxides in exhaust-gases due to the suppression of their formation in the boiler furnace when moisture is introduced with this air. 

Problems of environmental protection and energy-saving became priority in world practice. The main directions of deciding these pressing problems in municipal heat-power engineering is to improve the environmental indicators of heating boiler plants and increase the efficiency of using fuel in them through the use of technologies for deep recovery of the exhaust-gases heat. The relevance of scientific problems in these directions is increasing due to the steady increase in the fuel-energy costs and the strengthening of requirements to reducing environmental pollution.

When using these technologies of deep heat-recovery of exhaust-gases, the condensation mode of the heat-recovery equipment is realized, when, apart from to the so-called clear heat of these gases, the latent heat of condensation of the water vapor contained in them is also used. The condensation mode implementation also improves the ecological indicators of the boiler due to the reduction of fuel consumption and the dissolution in the resulting condensate of a part of harmful emissions formed during its combustion.

The use of modern heat-recovery technologies for the gasfired boiler plants with complex use of recovered heat for the preheating of boiler water, water of the chemical waterpurification system and blowing air makes it possible to reduce fuel consumption in the boiler and, accordingly, its harmful emissions by 8...12 %.

Humidification of the blowing air through the use of the recovery heat also provides a reduction of nitrogen oxides emissions to 60 % by suppressing their formation in the boiler combustion chamber.

References

1. Dolinskiy, A. A., Fialko, N. M., Navrodskaya, R. A., Gnedash, G. A. (2014). Osnovnyye printsipy sozdaniya teploutilizatsionnykh tekhnologiy dlia kotelnykh maloy energetiki [Basic principles of heat recovery technologies for boilers of the low thermal power]. Promyshlennaya teplotekhnika [Industrial Heat Engineering], 36(4), 27-35. (Rus.)
2. Fialko, N. M., Navrodskaya, R. A., Shevchuk, S. I., Presich, G. A., Gnedash, G. A. Glushak, O. Yu. (2014). Teplovyye metody zashchity gazootvodyashchikh traktov kotelnykh ustanovok s glubokim okhlazhdeniyem dymovykh gazov [Thermal protection methods of gas exhaust ducts of boiler plants with deep exhaust gases cooling]. Sovremennaya nauka: issledovaniya, idei, rezultaty, tekhnologii [Modern Science: Researches, Ideas, Results, Technologies], 2(15), 13-17. (Rus.)
3. Zimin, L. B., Fialko, N. M. (2008). Analiz effektivnosti teplonasosnykh sistem utilizatsii teploty kanalizatsionnykh stokov dlia teplosnabzheniya sotsialnykh obektov [Analysis of the effectiveness of heat pump systems of sewage runoff heat recovery for social facilities heat supply]. Promyshlennaya teplotekhnika [Industrial Heat Engineering], 30(1), 77-85. (Rus.)
4. Fialko, N. M.,Aronov, I. Z., Navrodskay, R.A. Presich, G. A. (2003). Effektivnost primeneniya kondensatsionnykh teploutilizatorov v sistemakh teplosnabzheniya [The efficacy of the condensing heat exchanger in heat supply systems]. Promyshlennaya teplotekhnika [Industrial Heat Engineering], 25(3), 36-41. (Rus.)
5. Fialko, N. M., Zimin, L. B., Dubovskoy, S.V. (2000). Utilizatsiya energii vybrosov sistem mestnoy ventilyatsii metropolitenov s pomoshchyu teplovykh nasosov [Utilization of energy emissions of local ventilation systems of subways using heat pumps]. Promyshlennaya teplotekhnika [Industrial Heat Engineering], 22(1), 90-93. (Rus.)
6. Fialko, N. M., Gomon, V. I., Navrodskay, R. A., Prokopov, V. G., Presich, G. A. (2000). Osobennosti metodiki rascheta poverkhnostnykh teploutilizatorov kondensatsionnogo tipa [Specifics of the calculation procedure for surface heat exchangers of condensation type, Industrial heat engineering]. Promyshlennaya teplotekhnika [Industrial Heat Engineering], 22(2), 49-53. (Rus.)
7. Fialko, N. M., Sherenkovsky, Yu. V., Stepanova, A. I., Presich, G. A., Navrodskaya, R. A., Maletskaya, O. Ye., Gnedash, G. A. (2012). Termodinamicheskaya optimizatsiya i analiz effektivnosti teploutilizatsionnoy sistemy kotelnykh agregatov [Thermodynamical optimization and analysis of efficiency for heatutilizing systems of boiler plants]. Promyshlennaya teplotekhnika [Industrial Heat Engineering], 34(2), 59-66. (Rus.)
8. Fialko, N. M., Presich, G. A., Navrodskaya, R. A., Gnedash, G. A. (2011). Udoskonalennia kompleksnoi systemy utylizatsii teploty vidkhidnykh haziv kotloahrehativ dlia pidihrivannia i zvolozhennia duttovoho povitria [Improvement of the complex heat-recovery system of exhaust-gases of boilers for heating and humidifying blown air]. Promyshlennaia teplotekhnika [Industrial Heat Engineering], 33(5), 88-95. (Ukr.)
9. Fialko, N. M., Navrodskaya, R. A., Presich, G. A. (2007).Analiz effektivnosti teploobmennogo oborudovaniya dlia obespecheniya otsutstviya kondensatoobrazovaniya v gazootvodiashchikh traktakh kotelnykh [Analysis of the efficiency of heat exchange equipment to ensure the absence of condensate formation in the gas ducts of boiler plants]. Problemy promyshlennoy teplotekhniki: tezisy V-oy Mezhdunarodnoy konferentsii. Izdatelstvo Lybid [Problems of industrial heat engineering: the theses of the Vth International Conference. Publishing house Lybid], 171-172. (Rus.)
10. Fialko, N. M., Sherenkovsky, Yu. V., Stepanova, A. I., Golubinskiy, P. K., Navrodskaya, R. A., Novakovskiy, M. A. (2008). Kompleksnyy podkhod k otsenke effektivnosti sistem utilizatsii teploty otkhodiashchikh gazov energeticheskikh ustanovok [Efficiency estimation systems for waste gases in power installations heat utilization]. Ekotekhnologii i resursosberezheniye [Energy technologies and resource saving], (5), 22-28. (Rus.)
11. Fialko, N. M., Navrodskaya, R. A., Gnedash, G. A., Presich, G. A., Stepanova, A. I., Shevchuk, S. I. (2014). Povysheniye effektivnosti kotelnykh ustanovok kommunalnoy teploenergetiki putem kombinirovannogo ispolzovaniya teploty otkhodyashchikh gazov [Efficiency increase of municipal power boiler-installations system by the combined use of exhaust gases for heating]. Alternativnaya energetika i ekologiya [Alternative Energy and Ecology (ISJAEE]), (15), 126-129. (Rus.)
12. Navrodskaya, R. A., Fialko, N. M., Gnedash, G. A., Sbrodova, G. A. (2017). Enerhoefektyvna teploutylizatsiyna systema dlia pidihrivannia teplomerezhnoi vody ta duttovoho povitria kotliv komunalnoi teploenerhetyky [Energy- efficient heat recovery system for heating the backward heating system water and blast air of municipal boilers]. Promyslova teplotekhnika [Industrial Heat Engineering], 39(4), 69-75. (Ukr.)
13. Sigal, A. I. (2004). Vliyaniye vlagi v dutyevom vozdukhe na effektivnost raboty kotlov promyshlennoy i kommunalnoy energetiki [Effect of moisture in the blown air on the efficiency of the boilers of industrial and municipal energy]. Teploenergetika [Thermal Engineering], 12, 34-37. (Rus.)
14. Bukharkin, E. N. (2004). K voprosu ob uluchshenii ekologicheskikh pokazateley gazoispolzuyushchikh ustanovok [On the issue of improving the environmental performance of gas-using facilities]. Promyshlennaya energetika [Industrial power engineering], 6, 40-42. (Rus.)
15. Dashevskiy, YU. M., Novikov, B. Ye., Khasanov– Agayev, L. R. (1991). Nekotoryye ekologicheskiye aspekty vnedreniya prirodookhrannykh i energosberegayushchikh tekhnologiy na TES [Some environmental aspects of the implementation of environmental and energy- saving technologies at TPPs]. Teploenergetika [Thermal Engineering], 4, 61-63. (Rus.)

Abstract views: 98
PDF Downloads: 66
Published
2018-06-20
How to Cite
Fialko, N. M., Navrodskaya, R. A., Presich, G. A., Gnedash, G. A., Shevchuk, S. I., & Martiuk, O. (2018). INCREASE OF ECOLOGICAL EFFECTIVENESS OF COMPLEX HEAT-RECOVERY SYSTEMS FOR BOILER PLANTS. Thermophysics and Thermal Power Engineering, 40(2), 27-32. https://doi.org/https://doi.org/10.31472/ihe.2.2018.04
Section
District and Industrial Heat Power