POLYMER MICRO- AND NANOCOMPOSITES AS OBJECTS OF THERMOPHYSICAL RESEARCH FOR ELEMENTS OF HEAT-POWER ENGINEERING EQUIPMENT


  • N.M. Fialko
  • R.V. Dinzhos
  • R.A. Navrodskaya
Keywords: polymer micro- and nanocomposites, thermophysical properties, heat-power equipment

Abstract

The results of studies of the regularities of the change in thermophysical characteristics and crystallization mechanisms for a wide range of polymeric micro- and nanocomposites oriented on production of elements of heat-power engineering equipment are presented. An analysis of the efficiency of using high- and low-conductivity modifications of these composite materials is done.

References

1. Kim H., Bae H., Han Z., Yu J., Kim S. Thermal Science, Part B: Physics, 2007, V.46, p. 87 – 95. (Eng.)

2. King J.A., Tomasi J.M., Helman I.D., Pisani W.A., Odegard G.M. Accelerated hydrothermal aging of cycloaliphatic epoxy/graphene nanoparticle composites, Polymer Degradation and Stability, 2016, V.133, p. 131 – 135. (Eng.)

3. Korolovych V.F., Ledin P.A., Shevchenko V.V., Bulavin L.A., Tsukruk V.V. Assembly of amphiphilic hyperbranched polymeric ionic liquids in aqueous media at di?erent pH and ionic strength, Macromolecules, 2016, V.49 (22), p. 8697–8710. (Eng.)

4. Lipatov Yu.S., Kosyanchuk L.F., Yarovaya N.V. In situ polymer nanocomposites: E?ect of nanoparticles on the interfacial region, Composite Interfaces, 2006, V.13, №7, p. 647 – 655. (Eng.)

5. Manilo M., Lebovka N., Barany S. Mechanism of Methylene Blue adsorption on hybrid lapo-nite-multi-walled carbon nanotube particles, Journal of Environmental Sciences, 2016, V.42, p. 134 – 141. (Eng.)

6. Privalko V.P., Shantalii T.A., Privalko E.G. Polyimides Reinforced with the Sol-Gel Derived Organosilicon Nanophase: Structure – Property Relationships, Journal of Macromolecular elements of power equipment, Industrial heat engineering, 2015, № 7, p. 172–175. (Rus.)

7. Shilov V.V., Tsvetkova I.N., Gomza Yu.P., Khashkovskii S.V. Solgel synthesis and investigation of hybrid organic-inorganic borosilicate nanocomposites, Glass Physics and Chemistry, 2005, V.32, №2, p. 218 – 227. (Eng.)

8. Wunderlich B. Termination of crystallization or ordering of flexible, linear macromolecules, Journal of Thermal Analysis and Calorimetry, 2012, V.109, №3, p.1117 –
1132. (Eng.)

9. Zhang D., Wang X., Song W., Han B., Lei Q.-Q.Analysis of crystallization property of LDPE/Fe3O4 nanodielectrics based on AFM measurements, Journal of Materials Science: Ma-terials in Electronics, 2017, V.28, №3, p. 3495 – 3499. (Eng.)

10. Liu Y., Zhang D. E?ects of structural diferences of graphene and the preparation strategies on the photocatalytic activity of graphene–TiO2 composite film, Journal of Materials Science: Materials in Electronics, 2017, V. 28, №6, p. 4965 – 4973. (Eng.)

11. DolinskyA.A., Fialko N.M. , Dinzhos R.V. , Navrodskaya R.A. Influence of methods of obtaining polymeric micro- and nanocomposites on their thermophysical properties, Industrial heat engineering, 2015, № 4, p. 5 – 13. (Rus.)

12. Dolinsky A.A., Fialko N.M., Dinzhos R.V., Navrodskaya R.A. Thermophysical properties of low-conductivity polymer nanocomposites for power equipment components, Industrial heat engineering, 2015, № 6, p. 5 – 15. (Rus.)

13. Dolinsky A.A., Fialko N.M., Dinzhos R.V., Navrodskaya R.A. Thermophysical characteristics of high-conductivity polymeric micro- and nanocomposites, Industrial heat engineering, 2015, № 5, p. 5–14. (Rus.)

14. Dolinsky A. A., Fialko N.M., Dinzhos R.V., Navrodskaya R.A. Temperature dependences of thermal conductivity coefficients of polymer micro- and nanocomposite materials,
Industrial heat engineering, 2016, № 1, p. 5 –15. (Rus.)


15. Fialko N.M., Dinzhos R.V. Thermophysical foundations the creation of polymer micro- and nanocomposites for conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets, Scientific Reports, 2016, V.6, p.101 – 109. (Eng.)

16. Wunderlich B. Physics of macromolecules. Т.2: Origin, growth and annealing of crystals. Moscow: Mir, 1979, 574 p. (Rus.)

17. Dolinsky A. A., Fialko N.M., Navrodskaya R.A., Gnedash G.A. The basic principles of creating heat recovery technologies for segregate heat power plants, Industrial heat engineering, 2014, № 4, p. 27–36. (Rus.)

18. Fialko N.M., Gomon V.I., Navrodskaya R.A., Prokopov V.G., Presich G.A. Specifics of the calculation procedure for surface heat exchangers of condensation type, Industrial heat engineering, 2000, № 2, p. 49–53. (Rus.)

19. Kirkpatrick S. Percolation and Conduction, Reviews of modern physics, 1973, Vol. 45, №4, p. 574–585. (Eng.)

20. McLachlan D.S., Chiteme C., Heiss W.D., Junjie Wu. The correct modelling of the second order terms of the complex conductivity results for continuum percolation media, using single phenomenological equation, Physica B, 2003, Vol. 338, p. 256–260. (Eng.)

Abstract views: 58
PDF Downloads: 74
Published
2017-04-20
How to Cite
Fialko, N., Dinzhos, R., & Navrodskaya, R. (2017). POLYMER MICRO- AND NANOCOMPOSITES AS OBJECTS OF THERMOPHYSICAL RESEARCH FOR ELEMENTS OF HEAT-POWER ENGINEERING EQUIPMENT. Thermophysics and Thermal Power Engineering, 39(2), 36-45. https://doi.org/https://doi.org/10.31472/ihe.2.2017.06