• A. A. Prykhodko Oles Honchar Dnipro National University, Gagarin ave., 72, Dnipro, 49010, Ukraine
  • S. V. Alekseyenko Oles Honchar Dnipro National University, Gagarin ave., 72, Dnipro, 49010, Ukraine
Keywords: airfoils icing, numerical simulation, surface roughness, convective heat transfer


The technique of the processes of investigating of convective heat transfer determining in the problems of icing of aerodynamic surfaces on the basis of the solution of the Reynolds-averaged Navier- Stokes equations and the one-parameter Spalart-Allmaras turbulence differential model with correction for a rough wall is presented.

A methodology that allowed to simulate airfoils icing processes taking into account the ice surface roughness is presented. For the description of the external air-droplet flow a model of interpenetrating media was used. For the description of the ice growing process the method of surface control volumes using the methodology of determining the convective heat transfer based on the solution of the Navier-Stokes equations and the one-parameter differential Spalart-Allmaras turbulence model with a correction for a rough wall were used. Verification was performed by comparing the calculations results with the data obtained with the help of known semiempirical relationships. The proposed approach, unlike existing methods, will allow us to begin solving problems in a three-dimensional statement, with a rather complex geometry, in the presence of transonic regions in the airflow, and also to determine the aerodynamic characteristics of streamlined bodies with rough ice accretions. References 15, figures 3.


1. Fuzaro Rafael C., Mendes Pio D., А. Lima da Silva G. CFD and Boundary Layer Models with Laminar- Turbulent Transition around Airfoils and a Rough Cylinder: Results Validation // SAE Technical Paper. – 2015-01-2163. – 2015. –14 р. DOI:10.4271/2015-01-2163.
2. Wright W. B. User Manual for the Improved NASA Lewis Ice Accretion Code LEWICE 1.6 // National Aeronautics and Space Administration. – Cleveland. – May 1995. – 95 p. (Contractor Report, 198355).
3. Guffond D., Brunet L. Validation du programme bidimensionnel de capitation // Oce National D'Etudes et deRecherches Aerospatiales, Chatillon Cedex, France. – 1988. (Rapport Technique, RP 20/5146 SY).
4. Advisory Circular of Federal Aviation Administration 25-28. Compliance of Transport Category Airplanes with Certification Requirements for Flight in Icing Conditions. – October 27, 2014. – 89 р.
5. Alekseyenko S., Sinapius M., Schulz M., Prykhodko O. Interaction of Supercooled Large Droplets withAerodynamic Profile // SAE Technical Paper 2015-01-2118, 2015. – 12 р. DOI:10.4271/2015-01-2118.
6. Alekseyenko S.V., Prykhodko O.A. Numerical simulation of icing of a cylinder and an airfoil: model review and computational results // TsAGI Science Journal. – V.44. – 2013. – Issue 6. – P. 761–805.
7. Alekseenko S.V., Prikhod’ko A.A. Mathematical Modeling of Ice Body Formation on the Wing Airfoil Surface // Fluid Dynamics, 2014. – V. 49. – No. 6. – Р. 715– 732. DOI: 10.1134/S0015462814060039.
8. Prikhod’ko A.A., Alekseenko S.V. Numerical Simulation of the Processes of Icing on Airfoils with Formation of a “Barrier” Ice // Journal of Engineering Physics and Thermophysics, May 2014 – V.87, Issue 3. – Р. 598–607. DOI:10.1007/s10891-014-1050-0.
9. Prykhodko A.A., Alekseenko S.V. Numerical Simulation of the Process of Airfoil Icing in the Presence of Large Supercooled Water Drops // Technical Physics Letters. – 2014. – V. 40, No. 10, P. 884–887. DOI:10.1134/S1063785014100125.
10. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flow // AIAA Paper. – Nо. 92 – 0439. – 1992. – 22 p.
11. Aupoix B., Spalart P.R. Extensions of the Spalart-Allmaras Turbulence Model to Account for Wall Roughness // International Journal of Heat and Fluid Flow. – V. 24. – 2003. – P. 454-462.
12. Grabaruk A.V., Strelets M.H., Shur M.L. Modeling of turbulence in the calculation of complex flows: a tutorial. SPb: Publisher Polytechnic University. – 2012. – 88 p. (Rus.)
361. Nikuradse J. Stromungsgesetze in rauhen Rohren (Laws of Flow in Rough Pipes) // VDI – Forschungsheft – 1933 (translated in NACA TM 1292, Nov. 1950).
14. Schlichting H. Boundary-layer theory // New York: McGraw-Hill, – 1979. – 817 p.
15. Isachenko V.P., Osipova V.A., Sukomel A.S. Heat transfer. – M.: "Energoizdat", 1981. – 415 p. (Rus.)

Abstract views: 217
PDF Downloads: 204
How to Cite
Prykhodko, A. A., & Alekseyenko, S. V. (2018). NUMERICAL INVESTIGATION OF THE INFLUENCE OF SURFACE ROUGHNESS ON CONVECTIVE HEAT TRANSFER AT AIRFOIL ICING PROCESS. Thermophysics and Thermal Power Engineering, 40(2), 65-71.
Thermodynamics and Transport Phenomena