INCREASE THE EFFICIENCY OF COMPLEX HEAT-RECOVERY SYSTEMS FOR HEATING AND HUMIDIFYING OF BLOWN AIR OF GAS-FIRED BOILERS


  • N. M. Fialko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zheliabova, 2a, Kyiv, 03680, Ukraine
  • G. A. Presich Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zheliabova, 2a, Kyiv, 03680, Ukraine
  • G. A. Gnedash Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zheliabova, 2a, Kyiv, 03680, Ukraine
  • S. I. Shevchuk Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zheliabova, 2a, Kyiv, 03680, Ukraine
  • I. L. Dashkovska Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, vul. Zheliabova, 2a, Kyiv, 03680, Ukraine
Keywords: exhaust-gases, heat losses, coefficient the use heat of fuel of boiler, heating of water for chemical water-purification system

Abstract

The work is devoted to increase of thermal and ecological efficiency of water-heating gas-fired boilers of municipal heat-power engineering. To improve thermal efficiency, heat-recovery technologies are used in which deep cooling of the exhaust-gases from boilers with the realization of the condensation mode of the heat recovery equipment is ensured. To implement this regime throughout the heating period, it is advisable to use complex heat-recovery systems in which several heat transfer agents are heated with sufficiently different thermal potentials. To enhance the environmental effect when using complex systems, it is possible to carry out combustion air humidifying in them, which contributes to the reduction of NOx emissions to the environment by the boiler plants.

The work suggests improvement of the known complex heat-recovery system for heating and humidifying the blown air by introducing into its comprise an additional element - water heater of chemical water-purification system. Such the technological solution will ensure a reduction in the thermal losses of the boiler plant and improve the operating conditions of the gas ducts of the boiler house by preventing the condensate from falling out of the wet exhaust-gases.

The aim of the work is to investigate the operating parameters of the complex heat-recovery system for heating and humidifying the blown air and preheating the water for chemical water-purification and comparing its basic heatly and humidity characteristics with the corresponding complex system without preheating the water.

The results of the investigations are presented in a wide operating range of the load variation of the water-heating boiler respectively the boiler plant temperature graph and are shown graphically.

The analysis of the obtained data showed that due to the proposed modernization by preheating the water of the chemical water-purification system in the complex heat-recovery system for heating and humidifying the blown air, an increase of coefficient the use heat of fuel of boilers is provided, depending on their load from 11% to 17%. For this improved heat-recovery system with preheating the water of the chemical water-purification system in comparison with the system without such preheating, the total heating capacity of the complex system increases by 1.3÷1.6 times, and the coefficient the use heat of fuel of the boiler  increases by 5.2%.

References

1. Fialko, N. M., Prokopov, V. G., Butovskiy, L. S., Sherenkovsky, Ju. V., Meranova, N. O., Aleshko, S. A., Kokhanenko, P. S., Polozenko, N. P. (2010). Modelirovaniye struktury techeniya izotermicheskogo potoka v eshelonirovannoy reshetke ploskikh stabilizatorov plameni [Simulation of the flow structure of an isothermal flow in the echeloned lattice of flat flame stabilizers]. Promyshlennaya teplotekhnika [Industrial Heat Engineering], 6, 28–36. (in Rus.)
2. Fialko, N. M., Sherenkovsky, Ju. V., Mayson, N. V., Meranova, N. O., Butovskiy, L. S., Abdulin, M. Z., Polozenko, N. P., Klishch, A. V., Strizheus, S. N., Timoshchenko, A. B. (2014). Matematicheskoye modelirovaniye protsessov techeniya i smeseobrazovaniya v tsilindricheskom stabilizatornom gorelochnom ustroystve [Mathematical modeling of processes of flow and mixture formation in a cylindrical stabilizer burner device]. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy [Eastern European Journal of Advanced Technologies], V.3, 8 (69), 40–44. (in Rus.)
3. Fialko, N. M., Butovsky, L. S., Prokopov, V. G., Sherenkovsky, Ju. V., Meranova, N. O., Alyoshko, S. A., Polozenko, N. P. (2011). Kompyuternoye modelirovaniye protsessa smeseobrazovaniya v gorelochnykh ustroystvakh stabilizatornogo tipa s podachey gaza vnedreniyem v snosyashchiy potok vozdukha [Computer simulation of process of mixture formation in burner devices of the stabilizing type with the introduction of gas into the blowing down airflow]. Promyshlennaya teplotekhnika [Industrial Heat Engineering], 33(1), 51–56. (in Rus.)
4. Stepanova, A. I. (2016). Analiz effektivnosti ustanovki s kombinirovannoy teploutilizatsionnoy sistemoy dlya podogreva vody i dut'yevogo vozdukha kotloagregata [Analysis of the efficiency of the installation with a combined heat recovery system for heating the water and the blown air of the boiler]. Promyshlennaya teplotekhnika [Industrial Heat Engineering], 38(4), 38–45. (in Rus.)
5. Navrodska R. (2015). Pidvyshchennya efektyvnosti teploutylizatsiynykh tekhnolohiy dlya kotelnykh ustanovok komunalnoyi teploenerhetyky [Improving the efficiency of heat utilization technologies for municipal heating boilers]. Naukovyy visnyk NLTU Ukrayiny [Scientific Bulletin of UNFU], 25(9), 225–229. (in Ukr.)
6. Fialko, N. M., Stepanova, A. I., Navrodskaya, R. A., Sherenkovsky, Yu. V., (2014). Effektivnost agregatirovannykh teploutilizatsionnykh sistem dlya kotelnykh s poverkhnostnymi kondensatsionnymi teploutilizatorami [Efficiency of the aggregated heat recovery systems for boilers with surface condensation heat exchangers]. Promyshlennaya teplotekhnika [Industrial Heat Engineering], 36(3), 63–71. (in Rus.)
7. Fialko, N. M., Navrodskaya, R. A., Presich, G. A., Gnedash, G. A., Shevchuk, S. I., Martiuk, O.V. (2018). Pidvyshchennya ekolohichnoyi efektyvnosti kompleksnykh teploutylizatsiynykh system kotelnykh ustanovok. [Increase of ecological effectiveness of complex heat-recovery systems for boiler plants] Promyshlennaya teplotekhnika [Industrial Heat Engineering], 40(2), 27–32. https://doi.org/https://doi.org/10.31472/ihe.2.2018.04 (in Ukr.)
8. Fialko, N. M, Stepanova, A. I, Presich, G. A Gnedash, G. A. (2015). Analiz effektivnosti teploutilizatsionnoy ustanovki dlya nagrevaniya i uvlazhneniya dut'yevogo vozdukha kotloagregata [The efficiency analisis of heat utilization instalasion for heating and humidifying of combustion air of boiler plant]. Promyshlennaya energetika [Industrial Heat engineering], 37(4), 71–79. (in Rus.)
9. Fialko, N. M., Presich, G. O., Navrodska, R. O., Gnedash, G. O., (2013). Ekolohichna efektyvnist kombinovanykh system utylizatsiyi teploty vykydnykh haziv kotelnoyi ustanovky [Ecological efficiency of combined heat recovery systems waste of exhaust gases for boiler plant]. Visnyk Natsionalnoho universytetu Lvivska politekhnika. Teoriya i praktyka budivnytstva [Bulletin of Lviv Polytechnic National University. The theory and practice of construction], (755), 429 – 434. (in Ukr.)
10. Fialko, N. M., Presich, G. O., Navrodska, R. O., Gnedash, G. O., (2011). Udoskonalennya kompleksnoyi systemy utylizatsiyi teploty vidkhidnykh haziv kotloahrehativ dlya pidihrivannya i zvolozhennya duttʹovoho povitrya [Improvement of the complex recovery system of heat of the exhaust-gases of boiler plants for heating and humidifying blown air]. Promyshlennaya energetika [Industrial Heat engineering], 33(5), 88–95. (in Ukr.)
11. Fialko, N. M., Gomon, V. I., Navrodskaya, R. A., Prokopov, V. G., Presich, G. A. (2000). Osobennosti metodiki rascheta poverkhnostnykh teploutilizatorov kondensatsionnogo tipa [Specifics of the calculation procedure for surface heat exchangers of condensation type, Industrial heat engineering]. Promyshlennaya teplotekhnika [Industrial Heat Engineering], 22(2), 49–53. (in Rus.)
12. Navrodska, R. A., Stepanova, A. I., Shevchuk, S. I., Gnedash, G. A., Presich, G. A. (2018). Eksperymentalni doslidzhennya teploobminu pid chas hlybokoho okholodzhennya produktiv zhoryannya hazospozhyvalnykh kotliv [Experimental investigation of heat-transfer at deep cooling of combustion materials of gas-fired boilers]. Naukovyy visnyk NLTU Ukrayiny [Scientific Bulletin of UNFU], 28(6), 103–108. https://doi.org/10.15421/40280620 (in Ukr.)
13. Fialko, N. M., Navrodskaya, R. A., Shevchuk, S. I., Presich, G. A., Gnedash, G. A. Glushak, O. Yu., (2014). Teplovyye metody zashchity gazootvodyashchikh traktov kotelnykh ustanovok s glubokim okhlazhdeniyem dymovykh gazov [Thermal protection methods of gas exhaust ducts of boiler plants with deep exhaust gases cooling]. Sovremennaya nauka: issledovaniya, idei, rezultaty, tekhnologii [Modern Science: Researches, Ideas, Results, Technologies], 2(15), 13–17. (in Rus.)
14. Babak V.P., Babak S.V., Myslovych M.V., Zaporozhets A.O., Zvarych V.M. Information Provision of Diagnostic Systems for Energy Facilities ; Edited by Member of the NAS of Ukraine V. Babak. – Kyiv: Akademperiodyka, 2018. – 134 p. DOI: https://doi.org/10.15407/akademperiodyka.353.134
15. Babak V.P., Berehun V.S., Burova Z.A. et al. Aparatno-prohramne zabezpechennia monitorinhu obiektiv heneruvannia, transportuvannia ta spozhyvannia teplovoi enerhii [Software and hardware for monitoring of the generation, the transportation and the consumption of heat energy]. - K.: ITTF NAN Ukrainy, za red. chl.-kor. NAN Ukrainy V.P. Babaka[Edited by Member of the NAS of Ukraine V. Babak, K.: ITTF NAN of Ukraine].2016. 298 pp. (in Ukr.)

Abstract views: 67
PDF Downloads: 43
Published
2018-09-07
How to Cite
Fialko, N. M., Presich, G. A., Gnedash, G. A., Shevchuk, S. I., & Dashkovska, I. L. (2018). INCREASE THE EFFICIENCY OF COMPLEX HEAT-RECOVERY SYSTEMS FOR HEATING AND HUMIDIFYING OF BLOWN AIR OF GAS-FIRED BOILERS. Thermophysics and Thermal Power Engineering, 40(3), 38-45. https://doi.org/https://doi.org/10.31472/ihe.3.2018.06
Section
District and Industrial Heat Power, Renewable Energy Systems, Energy Efficiency