RESEARCH THERMAL CHARACTERISTICS OF THE PROCESS OF PYROLYSIS OF METHANE IN THE ELECTROTHERMAL FLUIDISED BED


  • K.V. Simeiko The Gas Institute of National Academy of Science of Ukraine; 39, Degtyarivska Str., 03113, Kyiv, Ukraine
Keywords: methane, pyrolysis, electrothermal fluidized bed, hydrogen, pyrocarbon.

Abstract

The main products of high-temperature pyrolysis of methane are carbon and hydrogen. Due to their unique physical and chemical properties, pyrocarbon and pyrographite can be used in various industries and energy. Hydrogen is an energy-efficient and environmentally friendly energy carrier. Despite the large number of research works on methane pyrolysis, carrying out of this process in the electrothermal fluidized bed (ETFB) is not studied enough.

The purpose of the study is to determine the thermophysical characteristics of the process of methane pyrolysis (the main products of the reaction are hydrogen and pyrocarbon) in reactors with different types of ETFB.

The temperature of the complete disposition of methane to carbon and hydrogen is 800 K. This value is based on the thermodynamic calculations.

A laboratory and a pilot plant with a different type of ETFB have been created for this process.

Experimental studies of the process of methane pyrolysis had been carried out on these plants and experimental data were compared with the calculations.

The method which allows to determine the amount of precipitated carbon has been developed. It is based on the gas analysis data. Nusselt's criterion for different types of reactors with ETFB has been calculated.

It was showed that electrothermal heating of a fluidized bed of conductive particles is much more efficient than the external electric heating of a fluidized bed. This result is based on previous researches. It is explained by the direct influence of the plasma of microcircuits and by advantages of heat generation directly in the middle of the fluidized bed.

Taking into account the obtained results and the specifics of the application of the pyrocarbon coating on dielectric materials, a scheme of a reactor with ETFB, which allows to use both external heating and classical ETFB at the same time, has been developed.

References

1. Tesner P.A. Obrazovaniye ugleroda iz uglevodorodov gazovoy fazy [The formation of carbon from hydrocarbon gas phase]. M .: Khimiya [Chemistry], 1972. 321 p. (Rus.)
2. Stepanov Yu.B., Berkutov N.A., Kruglov V.N. Obrazovaniye i udaleniye otlozheniy pirougleroda (grafita) v koksovykh pechakh [Formation and removal of pyrocarbon (graphite) deposits in coke ovens]. Koks i khimiya [Coke and chemistry]. 2001. № 8. p. 18–26 (Rus.)
3. Simeiko K.V. Issledovaniye kharakteristik i svoystv pirouglerodnykh pokrytiy [Research of characteristics and properties of pyrocarbon coatings]. – Jenergotekhnologii i resursosberezheniye [Energy technologies and resource]. 2018. № 1. p. 37 - 43 (Rus.)
4. Mirosław Dors, Helena Nowakowska, Mariusz Jasiński, Jerzy Mizeraczyk Chemical Kinetics of Methane Pyrolysis in Microwave Plasma at Atmospheric Pressure // Plasma Chemistry and Plasma Processing. Volume 34, Issue 2, 2014, p. 313–326.
5. Maryam Younessi-Sinaki, Edgar A. Matida, Feridun Hamdullahpur Kinetic model of homogeneous thermal decomposition of methane and ethane // International journal of hydrogen energy. № 34 (2009). P. 3710–3716.
6. Cho Young-Gil, Choi Kyong-Hoon, Kim Young-Rok, Lee Sung-Han Kinetic investigation of oxidative Methane pyrolysis at high CH4/O2 ratio in a quartz flow microreactor below 1073 K // Bull. Korean Chem. Soc. 2008, Vol. 29, #8, P. 1609.
7 Jasiґnski M, Dors M, Mizeraczyk J. Production of hydrogen via methane reforming using atmospheric pressure microwave plasma // J Power Sources 181. 2008. P. 41–45.
8. Lee D.H., Kim K.T., Song Y.H., Kang W.S., Jo S. Mapping plasma chemistry in hydrocarbon fuel processing processes // Plasma Chemistry and Plasma Processing. 2013. Volume 33. P. 249–269
9. Strel'tsov I.A., Mishakov I.V., Vedyagin A.A., Mel'gunov M.S. Sintez uglerodnykh nanomaterialoviz uglevodorodnogo syr'ya na katalizatore Ni/SBA-15 [Synthesis of carbon nanomaterials from hydrocarbon feedstock on a Ni / SBA-15 catalyst]. – Khimiya v interesakh ustoychivogo razvitiya [Chemistry for Sustainable Development]. № 22. 2014. P. 187–194. (Rus.)
10. Kurbakov S.D. Uglerodnyye fazy, obrazuyushchiyesya pri pirolize gazoobraznykh uglevodorodov v reaktsionnom ob"yeme apparata kipyashchego sloya [Carbon phases formed during the pyrolysis of gaseous hydrocarbons in the reaction space of a fluidized bed apparatus]. Neorganicheskiye materialy [Inorganic materials]. - 2009. vol. 45, № 1. p. 26-37 (Rus.)
11. Skachkov V.A. Nauchno-tehnicheskie osnovy formirovanija funkcional'nyh svojstv kompozicionnyh materialov na osnove ugleroda [Scientific and technical basis for the formation of the functional properties of composite materials based on carbon] dissertation of the doctor of technical sciences. Zaporozh'e. 2018. 392 p. (Rus.)
12. Pat. 86131 Ukraine, B01J 8/18(2006.01), B01J 12/00. Reaktor dlja visokotemperaturnih procesіv [Reactor for high temperature processes] / V.O. Bogomolov O.P. Kozhan, B.I. Bondarenko, K.V. Simeiko; Applicant and patent holder: Gas institute of National academy of science of Ukraine. № u201309320; applic. date: 25.07.2013; publ. date: 10.12.2013. Bull № 23 (Ukr.)
13. Pat. 83147 Ukrayina, C10G 9/32 (2006.01). Reaktor dlya pirolizu hazopodibnykh vuhlevodniv [Reactor for pyrolysis of gaseous hydrocarbons] / V.O. Bohomolov, B.I. Bondarenko, O.P. Kozhan, K.V. Simeiko; Applicant and patent holder: Gas institute of National academy of science of Ukraine. № u201303318; applic. date: 18.03.2013; publ. date: 27.08.2013. Bull № 16 (Ukr.)
14. Bogomolov V.O. Kozhan A.P., Bondarenko B.I., Khovavko O.I., Simeiko K.V. Kapsulirovanie kvarcevogo peska pirouglerodom v jelektrotermicheskom psevdoozhizhenom sloe [Research of the process of quartz sand encapsulation by pyrolytic carbon]. Jenergotehnologii i resursozberezhenie [Energy technologies and resource]. 2013, № 5. p. 36–40 (Rus.)
15. Simeiko K.V. Ispolzovanie elektrotermicheskogo psevdoozhizhenogo sloya v kachestve vneshnego nagrevatelnogo elementa reaktora [Efficiency of electrothermal fluidized bed applying as the outer heating element of reactor]. Jenergotehnologii i resursozberezhenie [Energy technologies and resource]. 2015, № 1. p. 58 – 64 (Rus.)
16. Simeiko K.V. Teplovi harakteristiki reaktoru dlya oderzhannya kapsulovanogo pIrovugletsem kvartsevogo pIsku pri prohodzhennI protsesu pIrolIzu metanu [Thermal characteristics of the reactor for pyrocarbon encapsulated quartz sand while passing the pyrolysis of methane]. Visnik SumDU. Seriya Tehnichni nauki [Sumy State University. Series Technical Sciences.], 2013. № 4.p. 119 – 123 (Ukr.)
17. Simeiko K.V., Bezuglyiy V.K., Kozhan A.P., Bondarenko B.I. Issledovanie protsessa osazhdeniya tverdogo ugleroda pri pirolize uglevodorodnyih gazov [Research of the process of solid carbon deposition in the course of pyrolysis of hydrocarbon gases]. Jenergotehnologii i resursozberezhenie [Energy technologies and resource]. 2015, № 2. p. 18 – 24 (Rus.)
18. Pat. 117157 Ukraine, B01J 8/18(2006.01), B01J 8/42(2006.01), B01J 19/14(2006.01), C01B 33/021(2006.01), C01B 33/021(2006.01), C30B 25/10(2006.01), C30B 28/14(2006.01), C30B 31/12(2006.01). Reaktor dlja visokotemperaturnih procesіv u psevdozrіdzhenomu sharі [The reactor for high temperature processes in fluidized bed] / K.V. Sіmeiko, B.І. Bondarenko, O.P. Kozhan, V.M. Dmіtrіev; Applicant and patent holder: Gas institute of National academy of science of Ukraine. № a201506499; applic. date: 01.07.2015; publ. date: 26.06.2017, Bull № 12. (Ukr.)

Abstract views: 47
PDF Downloads: 40
Published
2018-12-14
How to Cite
Simeiko, K. (2018). RESEARCH THERMAL CHARACTERISTICS OF THE PROCESS OF PYROLYSIS OF METHANE IN THE ELECTROTHERMAL FLUIDISED BED. Thermophysics and Thermal Power Engineering, 40(4), 83-90. https://doi.org/https://doi.org/10.31472/ihe.4.2018.12
Section
Theory and Practice Measurement and Monitoring in Heat Power Engineering