APPROXIMATE ESTIMATES OF COMPLEX HEAT EXCHANGE IN OPTICALLY THICKNESS AND OPTICALLY THIN TURBULENT BOUNDARY LAYER


  • A.A. Avramenko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • N.P. Dmitrenko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • V.M. Kovalenko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • V.G. Gorobets National University of Life and Environmental Sciences of Ukraine
Keywords: heat exchange, turbulent boundary layer, thermal radiation.

Abstract

The article analyzes the main aspects of the process of complex heat transfer in an optically thin and optically thick boundary turbulent layer.

References

1. Thermal Radiation Heat Transfer. − CRC Press Taylor & Francis Group Boca Raton London New York, 2016. − 951 p.
2. Prutko K.A. [Simulation of high-temperature air radiation at the entrance of the descent vehicles with the second cosmic velocity], Trudy MIFI [Proceedings of Moscow Institute of Physics and Technology], 2014. V.6. № 2. P. 75–79. (Rus.)
3. Ivanov V.V., Karaseva L.V., Tihomirov S.A. [Heat transfer in boundary layers on radiating surfaces with a gradient flow], Elektrannuy zhyrnal “Inzhenernuy vestnik Dona” [Electronic scientific journal "Engineering Bulletin of the Don"], 2017. № 2. http://ivdon.ru/uploads/article/pdf/IVD_58_Ivanov.pdf_57aacc1784.pdf (Rus)
4. Gireesha B. J., Mahanthesh B., Gorla R. Thermal radiation and Hall effects on boundary layer flow past a non isothermal stretching surface embedded in porous medium with non uniform heat source/sink and fluid particle suspension // Heat and Mass Transfer. 2015. Vol.52, № 4. pp. 75−79
5. Bidin B., R. Nazar R. Numerical Solution of the Boundary Layer Flow Over an Exponentially Stretching Sheet with Thermal Radiation // European Journal of Scientific Research. 2009. Vol.33, № 4. pp. 710−717.
6. Rubtsov N.A., Sinitsin B.A. [Numerical simulation of non-stationary radational-convective heat transfer in the boundary layer of selectively radiating and scattering medium on a flat plate], Prikladnaya mehanika I tehnicheskaya fizika [Applied mechanics and technical physics], 2001. V.42. № 1. P. 124–130. (Rus.)
7. Avramenko A. A., Kuznetsov A. V. Instability of a slip flow in a curved channel formed by two concentric cylindrical surfaces // European Journal of Mechanics B/Fluids. 2009. 28, № 6. – P. 722–727.

8. Vargas M., Sierra F.Z., Ramos E., Avramenko A.A. Steady natural convection in a cylindrical cavity // Int. Comm. Heat Mass Transfer. 2002. 29, № 2. P.213–221.
9. Avramenko A.A., Kuznetsov A.V. The onset of convection in a suspension of gyrotactic microorganisms in superimposed fluid and porous layers: effect of vertical throughout // Transport in Porous Media. 2006. vol. 65. P. 159–176.
10. Kuznetsov A. V., Avramenko A. A. A minimal hydrodynamic model for a traffic jam in an axon // Int. Comm. Heat Mass Transfer. 2009. 36, № 1. P. 1–5.
11. Buy Shee. Dinamika izluchayustchego gaza [Emitting gas dynamics], Moskva, Mir. 1968. 324 p. (Rus).
12. Schlichting H., Gersten K. Boundary-Layer Theory. Springer, Berlin, 2000, 799 pp.

Abstract views: 13
PDF Downloads: 9
Published
2019-04-10
How to Cite
Avramenko, A., Dmitrenko, N., Kovalenko, V., & Gorobets, V. (2019). APPROXIMATE ESTIMATES OF COMPLEX HEAT EXCHANGE IN OPTICALLY THICKNESS AND OPTICALLY THIN TURBULENT BOUNDARY LAYER. Thermophysics and Thermal Power Engineering, 41(3), 20-25. https://doi.org/https://doi.org/10.31472/ttpe.3.2019.3
Section
Heat and Mass Transfer Processes and Equipment, Theory and Practice of Drying