INSTABILITY FLOW IN CHANNEL, OCCUPIED POROUS MEDIA


  • A.А. Avramenko
  • N.P. Dmytrenko
  • U.U. Kovetskaya
Keywords: instability, porosity, permeability, slip flow, perturbation number

Abstract

The flow instability in a flat porous microchannel is investigated. The collocation method for the numerical determination of the critical Reynolds number, which determines the hydrodynamic flow instability, is used. Also the effect of porosity and slipping on the critical wave numbers is determined.

References

1. Konovalov D.A., Drozdov I.G., Lazarenko I.N., Shmatov D.P. Modelirovanie procesov gidrodinamiki techeniya ohladitelya v nanostrukturah na ocnove niteevidnuh kristalov kremniya [Simulation of coolant flow hydrodynamics processes in nanostructures based on silicon whiskers], Vestnik Voronezhskogo universiteta. 2013, Т.9, №4, P.1 – 8. (Rus).

2. Konovalov D.A., Lazarenko I.N., Kozhuhov N.N., Drozdov I.G. Razrabotka metodov intensifikatsii teploobmena v microcanalnuh teploobmennikax gibridnuh system termostabilizatsii [Development of methods for enhancement of heat transfer in microchannel heat exchangers, thermal stabilization of hybrid systems], Vestnik Voronezhskogo universiteta. 2016, Т.12, №3, P.21–30. (Rus).

3. Jun Jie Liu, Hua Zhang, S. C. Yao, Yubai Li. Porous Media Modeling of Two-Phase Microchannel Cooling of Electronic Chips With Nonuniform Power Distribution, Journal of Electronic Packaging. 2014, V.136, №2, 021008.

4. Avrameko A.A., Tyrinov A.I., Shevchuk I.V., Dmitrenko N.P. Dean instability of nanofluids with radial temperature and concentration nonuniformity, Physic of fluids, 2016, V.28, Р. 034104-1–0.4104-16.

5. Avrameko A.A., Tyrinov A.I., Domashev V.E., Kovetskaya M.M., Sorokina T.V., Dmitrenko N.P. Neustoichivost potoka v krivolineinom kanale [The instability of the moving flow in a curved channel] // Promyshlennaya teplotekhnika [Industrial Heat Engineering], 2013, Т. 35, №2, P. 11–16. (Rus).

6. Nield D.A. The stability of flow in a channel or duct occupied by a porous medium, Int. J. Heat Transfer. 2003, V. 46, №2, P.4351–4354.

7. Avramenko A.A., Kuznetsov, A.V., Nield D.A. Instability of slip flow in a channel occupied by a hyperporous medium, Jornal of porous media, 2007, V.10, №5, Р. 435–442.

8. Lauga E., Cossu C.A. A note on the stability of slip channel flows, Phys. Fluids. 2005, V. 17, №8, Р.088106-1–088106-4.

9. Gad-el-Hak M. The fluid mechanics of microdevices, J. Fluids Engineering. 1999, V. 121, №1, P.5–33.

10. Schlichting H., Gersten K. Boundary Layer Theory. 8th ed. Berlin. Springer: 2000, 799p.

11. Orsag S.A. Accurate solution of the Orr-Sommerfeld stability equitation, J. Fluid Mech. 1971, V.50, P. 689–703.

Abstract views: 53
PDF Downloads: 66
Published
2017-02-20
How to Cite
Avramenko, A., Dmytrenko, N., & Kovetskaya, U. (2017). INSTABILITY FLOW IN CHANNEL, OCCUPIED POROUS MEDIA. Thermophysics and Thermal Power Engineering, 39(1), 13-16. https://doi.org/https://doi.org/10.31472/ihe.1.2017.02