TECHNOLOGIES, SYSTEMS, AND EQUIPMENT FOR WASTEWATER HEAT UTILIZATION (REVIEW)


  • B.І. Basok Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • M.P. Novitska Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • S.M. Goncharuk Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
Keywords: secondary energy resources, prospects of use, wastewater, utilization, heat pumps.

Abstract

The paper analyzes research, technologies, and equipment related to wastewater heat utilization systems. The main factors influencing the development of the industry and the implementation of such systems are given. Such factors include: social, political, economic, technological, legal and environmental. The classification of technologies and equipment for wastewater heat utilization according to the place of heat extraction is given. Namely, low potential wastewater heat can be collected at the treatment plants, in sewer collectors leading to treatment plants and directly in houses. The paper describes the available research in the scientific literature on these three categories The global scientific community is working to create efficient wastewater heat recovery systems. The environmental situation requires greater use of wastewater recovery systems. An important issue is to increase awareness and education of the population, as this approach will increase the degree of implementation of wastewater heat utilization systems in residential buildings.

References

1. F. Schmid Sewage water: interesting heat source for heat pumps and chillers/ 9th International IEA Heat Pump Conference, 20 – 22 May 2008, Zürich, Switzerland
2. S.Kordana, K. Pochwat, D. Słyś, M. Starzec Opportunities and Threats of Implementing Drain Water Heat Recovery Units in Poland. Resources, 2019, 8, 88.
3. Deiss Ch. Energiequelle zum Heizen und Kühlen – Grösste Abwasser energie nutzungsanlage in der Schweiz, gwa (Gas Wasser Abwasser) journal N6, 2007, pp. 413-420.
4. Basok B.I. Analiz tekhnichnikh kharakterystyk teplonasosnoi stantsii, shcho vykoryctovuie nyzkopotentsiinu teplotu stichnykh vod Bortnytskoi stancii aeratsii dlia teplopostachannia zhytlovykh mikroraioniv “Osokorky” I “Pozdniaky” m. Kyeva. [Technical parameters analysis of a heat-pump unit based on low-potential sewage waters utilization at Bortnychi aeration plant for heat supply in Osokorky and Poznyaky regions of Kyiv] Basok B.I. at all. Promyshlennaya teplotekhnika [Industrial heat engineering], 2011, V. 33, N6, P.58–63. (Ukr.)
5. Basok B.I. Analiz ekonomichnoi dotsilnosti budivnytstva teplonasosnoi stantsii, shcho vykoryctovuie nyzkopotentsiinu teplotu stichnykh vod Bortnytskoi stancii aeratsii dlia teplopostachannia zhytlovykh mikroraioniv “Osokorky” I “Pozdniaky” m. Kyeva. [Economical parameters analysis of a heat-pump unit based on low-potential sewage waters utilization at Bortnychi aeration plant for heat supply in Osokorky and Poznyaky regions of Kyiv] Basok B.I. at all. Promyshlennaya teplotekhnika [Industrial heat engineering]. 2012, V. 34, N5, P.53–57. (Ukr.)
6. L.N. Alekseiko, V. V. Slesarenko, A. A. Yudakov, Combination of wastewater treatment plants and heat pumps, Pacific Science Review, Volume 16, Issue 1, 2014, Pages 36-39, https://doi.org/10.1016/j.pscr.2014.08.007.
7. F. Schmid Wärmerückgewinnung aus Abwasser – Potenzialerhebung im Rahmen des GEP, gwa (Gas Wasser Abwasser) journal N6/2007, pp. 405-411.
8. D. Stransky I. Kabelkova, V. Bares, G. Stastna, Z. Suchorab Suitability of combined sewers for the installation of heat exchangers // Ecological Chemistry and Engineering, Volume 23, Issue 1, Pages 87–98. https://doi.org/10.1515/eces-2016-0006
9. B. Basok, М. Novitska, Y. Litvinuk Osoblyvosti rozrakhunku teploobminnoho aparatu dlia utylizatsii teploty stichnyh vod [Characteristic of heat exchanger calculation for wastewater heat recovery.] Promyshlennaya teplotekhnika [Industrial heat engineering] 2016, V.38, N6, P. 65-70. (Rus) https://doi.org/ 10.31472/ihe.6.2016.09
10. Z. Zhuang, D. Sun Design and calculation of the sewage heat exchanger based on SCILAB // 2009 IEEE International Workshop on Open-source Software for Scientific Computation, (OSSC), 2009, pp.148–152.
11. L. Postrioti, G. Baldinelli, F. Bianchi, G. Buitoni, F. Di Maria, F. Asdrubali. An experimental setup for the analysis of an energy recovery system from wastewater for heat pumps in civil buildings. Applied Thermal Engineering, 102 (2016) P.961–971. http://dx.doi.org/10.1016/j.applthermaleng.2016.04.016
12. А. Bertrand, R. Aggoune, F. Maréchal. In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs// Applied Energy, 2017, Vol. 192, P.110-125. https://doi.org/10.1016/j.apenergy.2017.01.096
13. A. Obidnyk, E. Malkin, A. Yatsenko. Analiz sushchestvuiushchih ustroistv i system otbora nizkopotentsialnoi teploty stochnih vod system kanalizatsii. [Analysis of existing devices and systems for utilization of low-grade heat waste sewage water] // Budownictwo o zoptymalizowanym potencjale energetycznym [Construction of optimized energy potential] 2015, Vol.1, N 15, P. 143-151. (Rus)
14. A. Bertrand, A. Mastrucci, N. Schueler, R. Aggoune, F. Marechal. Characterisation of domestic hot water end-uses for integrated urban thermal energy assessment and optimization // Applied Energy, 2017. Vol. 186, Part 2. P. 152-166. https://doi.org/10.1016/j.apenergy.2016.02.107
15. P. Eslami-nejad, M. Bernier. Impact of grey water heat recovery on the electrical demand of domestic hot water heaters // Eleventh International IBPSA Conference Glasgow, Scotland, July 27-30, 2009. P. 681-687.
16. L.T. Wong, K.W. Mui, Y. Guan. Shower water heat recovery in high-rise residential buildings of Hong Kong // Applied Energy, 2010, Vol. 87, P. 703–709. https://doi.org/10.1016/j.apenergy.2009.08.008
17. J. Vaičiūnas, V. Geležiūnas, R. Valančius, A. Jurelionis, T. Ždankus. Analysis of Drain Water Heat Exchangers System in Wellness Center // Journal of Sustainable Architecture and Civil Engineering, 2016, Vol. 4, P.15-23. http://dx.doi.org/10.5755/j01.sace.17.4.16294
18. D. Sły´s, S. Kordana. Financial analysis of the implementation of a Drain Water Heat Recovery unit in residential housing // Energy and Buildings, 2014, Vol. 71, P. 1–11. http://dx.doi.org/10.1016/j.enbuild.2013.11.088
19. D. Picard, V.Delisle, M. Bernier, M. Kummert. On the combined effect of wastewater heat recovery and solar domestic hot water heating // Canadian Solar Buildings Conference, Montreal, August 20-24, 2004.
20. Kamyar Tanha, Alan S. Fung, Rakesh Kumar. Performance of two domestic solar water heaters with drain water heat recovery units: Simulation and experimental investigation // Applied Thermal Engineering, 2015, Vol. 90, P. 444-459. http://dx.doi.org/10.1016/j.applthermaleng.2015.07.038
21. M. P. Novitska, Teploobmennyi apparat dlia utilizatsii teploty stochnikh vod domokhoziaistva [Household drain water heat recovery unit] Promyshlennaya teplotekhnika [Industrial heat engineering], 2018, V40, N1, P. 56-60. (Rus) https://doi.org/10.31472/ihe.1.2018.08

Abstract views: 182
PDF Downloads: 210
Published
2020-06-10
How to Cite
Basok, B., Novitska, M., & Goncharuk, S. (2020). TECHNOLOGIES, SYSTEMS, AND EQUIPMENT FOR WASTEWATER HEAT UTILIZATION (REVIEW). Thermophysics and Thermal Power Engineering, 42(3), 39-46. https://doi.org/https://doi.org/10.31472/ttpe.3.2020.4
Section
District and Industrial Heat Power, Renewable Energy Systems, Energy Efficiency