LINEAR AND NONLINEAR INSTABILITY OF FLOW IN CHANNEL OCCUPIED POROUS MEDIA


  • A.A. Avramenko
  • N.P. Dmitrenko
  • Y.Y. Kovetskaya
Keywords: renormalized analysis, mathematical model, porosity, instability, turbulence.

Abstract

The paper investigates linear and nonlinear hydrodynamic instability of flow in channel ocuped porous medium. The effects of linear instability are considered using the method of linear perturbations. The nonlinear instability of the flow is considered using the renormalized expression for the coefficient of the kinematic viscosity.

References

1. Antohe, B.V., Lage, J.L. A general two-equation macroscopic model for incompressible flow in porous media. // International Journal of Heat and Mass Transfer. – 1997. – № 40.– Р. 3013–3024.

2. Getachew D., Minkowycz W.J., Lage J.L. A modified form of the model for turbulent flows of an incompressible fluid in porous media // International Journal of Heat and Mass Transfer. – 2000. – №43. – Р. 2909–2915.

3. Chung K.Y., Lee K.S., Kim W.S. Modified macroscopic turbulence modeling for the tube with channel geometry in porous media // Numerical Heat Transfer A.– 2003. – № 43.– Р. 659– 668.

4. de Lemos M.J.S., Pedras M.H.J. Recent mathematical models for turbulent flow in saturated rigid. Vol.123(4). – Р. 935–940.

5. de Lemos M.J.S., Pedras M.H.J. On the mathematical description and simulation of turbulent flow in a porous medium formed by an array of elliptic rods. // ASME J Fluids Engineering. – 2001a. – Vol.123(4). – P. 941–947.

6. de Lemos M.J.S., Pedras M.H.J. Macroscopic turbulence modeling for incompressible flow through undeformable porous media. // International Journal of Heat and Mass Transfer. – 2001b.– №. 44.– P. 1081–1093.

7. de Lemos M.J.S., Pedras M.H.J. Simulation of turbulent flow in porous media using a spatially periodic array and a low Re two-equation closure. // Numerical Heat Transfer. – 2001c. – Part A. – Vol.39. – P. 35–59.

8. Masuoka T., Takatsu Y., Inoue T. Chaotic behavior and transition to turbulence in porous media. // Microscale Thermophysical Engineering. – 2002. – Vol.6. – P. 347–357.

9. Barr D.W. Turbulent flow through porous media. // Ground Water. ? 2001. – Vol.39. – P. 646–650.

10. Alvarez G., Bournet P.E., Flick D. Two-dimensional simulation of turbulent flow and heat transfer through stacked spheres. // International Journal of Heat and Mass Transfer. – 2003. – №.46. – P. 2459–2469.

11. Flick D., Leslous A., Alvarez G. Semi-empirical modeling of turbulent fluid flow and heat transfer in porous media. // International Journal of Refrigeration. – 2003. ? Vol.26. – P. 349–359.

12. Vadasz P. Small and moderate Prandtl number convection in a porous layer heated from below. // International Journal of Energy Research. – 2003. ? Vol.27. – P. 941–960.

13. Hahn S., Je J., Choi H. Direct numerical simulation of turbulent flow with permeable walls. // J Fluid Mech. – 2002. ? Vol.450. – P. 259–285.

14. Macedo H.H., Costa U.M.S. Almeida M.P. Turbulent effects on fluid flow through disordered porous media // Physica A. – 2001. ? Vol.299. – P. 371–377.

15. Avramenko A.A., Kuznetsov A.V., Basok B.I., Blinov D.G. Investigation of stability of a laminar flow in parallel-plate channel filled with a fluid saturated porous medium // Physics of flow. - 2005. ? № 17. – P. 1–6.

16. Avramenko A.A., Kuznetsov A.V., Nield D.A. Instability of slip-flow in a channel occupied by a hyper-porous medium // Journal of Porous Media. – 2007. – Vol. 10. – P. 435–442.

17. Nield D. A. The stability of flow in channel or duct occupied by a porous medium // J. Heat Mass Transfer.- 2003.- №. 46.- P. 4351–4354.

18. Fournier J.D., Frisch U. Remarks on the renormalization group in statistical fluid dynamics // Phys. Rev. А. – 1983. – Vol. 28, № 2. – P. 1000 – 1002.

19. Yakhot V, Orszag S.A. Renormalization group analysis of turbulence. I. Basic theory // J. Sci. Соmp.– 1986.– 1, № 1.– Р. 3–51.

20. Avramenko A.A., Kuznetsov A.V. Renormalization Group Model of Lage-Scale Turbulence in Porous Media // Transrort in Porous Media. − 2006. − № 63. – P. 175−193.

21. Avramenko A.A., Basok B.I., Dmitrenko N.P. Renormalization group analysis of turbulence. – Kyiv: Express, 2013. 298 p.

Abstract views: 68
PDF Downloads: 66
Published
2017-06-20
How to Cite
Avramenko, A., Dmitrenko, N., & Kovetskaya, Y. (2017). LINEAR AND NONLINEAR INSTABILITY OF FLOW IN CHANNEL OCCUPIED POROUS MEDIA. Thermophysics and Thermal Power Engineering, 39(3), 40-46. https://doi.org/https://doi.org/10.31472/ihe.3.2017.06
Section
Heat and Mass Exchange Processes