DETERMINATION OF HEAT TRANSFER EFFICIENCY IN THE CONDITIONS OF FORCED CONVECTION FROM PIPES WITH SPECIAL RIBS


  • S.І. Kostyk National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • V.Yu. Shybetskyi National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • S.V. Plashykhin Institute of Engineering Thermophysics of NAS of Ukraine
  • Y.О. Bykoriz Institute of Engineering Thermophysics of NAS of Ukraine
Keywords: heat transfer, k-ε turbulence model, forced convection, ANSYS, СFX

Abstract

Today, heat transfer processes are present in almost all technological processes of various industries. In heat exchange processes, shell-and-tube heat exchangers are quite effective and easy to manufacture, as the long-term practice of using these devices has shown. Therefore, intensification of heat transfer processes, improvement and development of appropriate equipment is a very urgent task. The object of research is a heat-exchange element with special finning on heat-exchange tubes. The subject of research is the heat transfer processes implemented in a heat exchange element with special finning. The aim of the study is to determine the efficiency of heat transfer of the finned surface of the heat exchange element under conditions of forced convection and to evaluate its efficiency by means of experimental and computer research. This article presents a computer simulation that allows to adequately assess the efficiency of using various designs of finning elements of heat exchange equipment. This is confirmed by the convergence of the experimental data and the results of computer simulation (the discrepancy between the results of the experiment and computer simulation does not exceed 5 %). Experimental and computer studies have shown that the proposed technical solution is more effective than standard ones and can be used in the design of new equipment or improvement of the existing one.

References

1. Шидловський, А.К. Енергоефективність та відновлювальні джерела енергії. – К.: «Українські енциклопедичні знання», 2007. – 560 с.
2. Айнштейн В.Г., Захаров М.К., Носов Г.А. Общий курс процессов и аппаратов химической промышленности. – М.: Химия, 2009. – 888 с.
3. Айнштейн В.Г. Общий курс процессов и аппаратов химической промышленности. – М.: Бином. ЛЗ, 2002. – 872 с.
4. Xiaochuan L., Zhi Yan. A new approach for estimation of total heat exchange factor in reheating furnace by solving an inverse heat conduction problem. International Journal of Heat and Mass Transfer. 2017. V. 112. – P. 1062 – 1071. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.009
5. Zhang C., Li Y. Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process. Energy. 2017. V. 124. – P. 565 – 578. https://doi.org/10.1016/j.energy.2017.02.103
6. Abdollahzadeh M., Esmaeilpour M., Vizinho R., Younesi A., Pàscoa J. Assessment of RANS turbulence models for numerical study of laminar-turbulent transition in convection heat transfer. International Journal of Heat and Mass Transfer. 2017. V. 115. – P. 1288 – 1308. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.114
7. Song J., Liu Z., Ma Z., Zhang J. Experimental investigation of convective heat transfer from sewage in heat exchange pipes and the construction of a fouling resistance-based mathematical model. Energy and Buildings. 2017. V. 150. – P. 412 – 420. https://doi.org/10.1016/j.enbuild.2017.06.025
8. Lanzafame R., Mauro S., Messina M., Brusca S. Heat Exchange Numerical Modeling of a Submarine Pipeline for Crude Oil Transport. Energy Procedia. 2017. V. 126. – P. 18 – 25. https://doi.org/10.1016/j.egypro.2017.08.048
9. Chen-Ru Z., Zhang Z., Jiang P., Bo H. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids. Nuclear Engineering and Design. 2017. V. 313. – P. 401 – 413. https://doi.org/10.1016/j.nucengdes.2016.12.033
10. Jafari M., Farhadi M., Sedighi K. Thermal performance enhancement in a heat exchanging tube via a four-lobe swirl generator: An experimental and numerical approach. Applied Thermal Engineering. 2017. V. 124. – P. 883 – 896. https://doi.org/10.1016/j.applthermaleng.2017.06.095
11. Костик С.И., Ободович А.Н. Исследование технических и теплофизических характеристик универсального сушильного стенда по обезвоживанию термолабильных материалов. Молодой ученый. 2014. №4. – C. 195 – 198.
12. Шибецький, В.Ю., Костик С.І., Семенюк С.М. Розробка конструкції та моделювання гідродинаміки в біореакторі з поверхневим культивуванням клітинних культур. Scientific Journal «ScienceRise». 2017. № 7 (36). – C. 53 – 59. https://doi.org/10.15587/2313-8416.2017.107176
13. Закоморний Д.М., Кутовий М.Г, Костик С.І., Поводзинський В.М., Шибецький В.Ю. Гідродинаміка ферментеру з багатоваловою мішалкою. Scientific Journal «ScienceRise». 2016. № 5 / 2 (22). – C. 65 – 70. https://doi.org/10.15587/2313-8416.2016.69451
14. Kostyk S., Shybetskyy V., Povodzinsy V., Fesenko S. [Revealing special features of hydrodynamics in a rotor-disk film vaporizing plant]. [Eastern-European Journal Of Enterprise Technologies], 2019. 1/6 (97). – P. 28 – 33. https://doi.org/10.15587/1729-4061.2019.156649

Abstract views: 65
PDF Downloads: 53
Published
2021-05-11
How to Cite
Kostyk, S., Shybetskyi, V., Plashykhin, S., & Bykoriz, Y. (2021). DETERMINATION OF HEAT TRANSFER EFFICIENCY IN THE CONDITIONS OF FORCED CONVECTION FROM PIPES WITH SPECIAL RIBS. Thermophysics and Thermal Power Engineering, 43(2), 21-29. https://doi.org/https://doi.org/10.31472/ttpe.2.2021.3
Section
Heat and Mass Transfer Processes and Equipment, Theory and Practice of Drying