LIFE CYCLE ASSESSMENT OF HEAT PRODUCTION FROM ENERGY CROPS


  • O.V. Tryboi Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • T.A. Zheliezna Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • A.I. Bashtovyi Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
Keywords: biomass, biofuel, biomass potential, energy crops, life cycle, life cycle assessment.

Abstract

The aim of the work is a life cycle assessment of heat production from energy crops by using energy yield coefficient and value of greenhouse gas emissions reduction. State of the art and prospects for growing energy crops in the EU and Ukraine are analyzed. Today, the area under energy crops in the EU and Ukraine is relatively small, but there is significant potential for the development of this sector, which requires further research and implementation of practical measures. Typically, the life cycle assessment of energy production from biomass includes a feedstock cycle, which begins with the phase of biomass collection, and a conversion subsystem. The main feature of the life cycle assessment concerning energy crops is including the phase of their growth in the feedstock cycle. Results of the study show that the energy efficiency of the life cycle of heat production from energy crops chips and pellets is quite high and meets the recommendation that the non-renewable energy yield coefficient should be at least more than 2. Reduction of greenhouse gas emissions during such a life cycle is 40-90% for a 500 kW boiler plant when transporting biofuels to the consumer at a distance of up to 500 km. Feasibility study of projects on growing energy crops and heat production from them shows that under the current conditions in Ukraine, such projects are on the verge of profitability and therefore may not be attractive enough for investors. To promote the development of this sector, it is recommended to introduce a state subsidy per hectare of a plantation area.

References

1. Гелетуха Г.Г., Желєзна Т.А., Трибой О.В. Перспективи вирощування та використання енергетичних культур в Україні. Частина 1. // Промислова теплотехніка. – 2015, т. 37, № 4, с. 53-60.
https://doi.org/10.31472/ihe.4.2015.06
2. Самохвалова В.Л., Фатєєв А.І., Зуза С.Г. та ін. Фіторемедіація техногенно забруднених ґрунтів // Агроекологічний журнал. – 2015, № 1, с. 92-100. https://bit.ly/3t4uHpV
3. Biomass supply. Bioenergy Europe Statistical Report, 2020.
https://bioenergyeurope.org/article/270-biomass-supply.html
4. Bioenergy Europe factsheet: Biomass for energy - Agricultural residues & energy crops, 2019.
https://bioenergyeurope.org/article/204-bioenergy-explained-biomass-for-energy-agricultural-residues-energy-crops.html
5. Ukraine Forth Progress Report on promotion and use of energy from renewable sources 2018-2019, 2020
https://www.energy-community.org/dam/jcr:342ac109-35d4-4233-8d7e-74d2d534ab9f/UE_RES_PR_122020.pdf
6. Шафаренко Ю.А. Законодавча політика щодо підтримки вирощування енергетичних рослин. Презентація на вебінарі «Енергетичні культури для біоенергетичних проєктів: перспективи для України», 09.09.2020, Київ. https://uabio.org/wp-content/uploads/2020/09/Shafarenko_SAEE_09092020.pdf
7. Гелетуха Г.Г. Енергетичні рослини для біоенергетичних проєктів: бар’єри та перспективи в Україні. Презентація на вебінарі «Енергетичні культури для біоенергетичних проєктів: перспективи для України», 09.09.2020, Київ. https://uabio.org/wp-content/uploads/2020/09/Geletukha-energy-crops-09-September-2020.pdf
8. Promoting sustainable use of underutilized lands for bioenergy production through a web-based platform for Europe – Bioplat-EU, EU Horizon 2020 project, 2018-2021. https://bioplat.eu/
9. Гелетуха Г.Г., Желєзна Т.А., Матвєєв Ю.Б. та ін. Дорожня карта розвитку біоенергетики України до 2050 року. Аналітична записка UABIO № 26, 2020. https://uabio.org/materials/9115/
10. Гелетуха Г.Г., Желєзна Т.А., Дроздова О.І. Енергетичний і екологічний аналіз технологій виробництва енергії з біомаси. Частина 1 // Промислова теплотехніка. – 2014, т. 36, № 6, с.78-88.
11. Гелетуха Г.Г., Желєзна Т.А., Дроздова О.І. Енергетичний і екологічний аналіз технологій виробництва енергії з біомаси. Частина 2 // Промислова теплотехніка. – 2015, т. 37, № 1, с.53-62.
https://doi.org/10.31472/ihe.1.2015.07
12. Th. Nussbaumer, M. Oser. Evaluation of biomass combustion based energy systems by cumulative energy demand and energy yield coefficient. Report for International Energy Agency and Swiss Federal Office of Energy, 2004.
https://verenum.ch/Publikationen/Nussbaumer_IEA_CED_V11.pdf
13. DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the promotion of the use of energy from renewable sources (recast).
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN

Abstract views: 86
PDF Downloads: 85
Published
2021-03-22
How to Cite
Tryboi, O., Zheliezna, T., & Bashtovyi, A. (2021). LIFE CYCLE ASSESSMENT OF HEAT PRODUCTION FROM ENERGY CROPS. Thermophysics and Thermal Power Engineering, 43(2), 50-59. https://doi.org/https://doi.org/10.31472/ttpe.2.2021.6
Section
District and Industrial Heat Power, Renewable Energy Systems, Energy Efficiency

Most read articles by the same author(s)

1 2 3 > >>