HEAT TRANSFER AT NATURAL CONVECTION OF VAN DER WAALS GAS


  • A.A. Avramenko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • Yu.Yu. Kovetska Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • N.P. Dmitrenko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • O.I. Skitsko Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • L.V. Plakhotnia Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
Keywords: natural convection, van der Waals gas, heat transfer, analytical solution.

Abstract

This paper focuses on a study of natural convection in a Van der Waals gas over a vertical heated plate. An approximate analytical solution of the problem was obtained using an integral method for momentum and energy equations. A simplified form of the van der Waals equation for real gases enabled estimating the effects of the dimensionless van der Waals parameters on the normalized heat transfer coefficient. The effects of the dimensionless Waa and Wab numbers on the normalized Nusselt number in the real gas compared to the ideal gas were estimated. The analysis of the calculation results showed that, with an increase in the Waa number (which characterizes the additional pressure in the real gas), the normalized Nusselt number increases. The effect of additional volume, which  shows in an increase in the Wab number, causes a deterioration in the conditions  interaction between gas molecules and the wall. This is accompanied by a decrease in the Archimedes force and flow rate in the boundary layer, which leads to a weakening of heat transfer in comparison with an ideal gas.

References

1. Banaszkiewicz T., Chorowski M., Gizicki W., Jedrusyna A., Kielar J., Malecha Z., Piotrowska A., Polinski J., Rogala Z., Sierpowski K., Skrzypacz J., Stanclik M., Tomczuk K., Dow ̇zenko P. Liquefied Natural Gas in MobileApplications—Opportunities. Energies. 2020. V.13: 5673. doi:10.3390/en13215673. (in Eng.)
2. Staffell I., Scamman D., Abad A.V., Balcombe P., Dodds P.E., Ekins P., Shah N., Ward K.R. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science. 2019. Issue 2. Р.463 – 491. https://doi.org/10.1039/C8EE01157E. (in Eng.)
3. Bystritsky G.F. Heat engineering and power equipment of industrial enterprises. 5th ed.;Yurayt: Moscow. 2018. 305р. URL:https://urait.ru/bcode/414423. (in Rus.)
4. Perdiguer-López R., Berné-Valero J.L., Garrido-Villén N. Application of GNSS Methodologies to Obtain Precipitable Water Vapor (PWV) and Its Comparison with Radiosonde Data. Proceedings. 2019. V.19, №24. 24р. doi:10.3390/proceedings2019019024. (in Eng.)
5. Hanley E.S., Deane P., Gallachóir B. The role of hydrogen in low carbon energy futures–A review of existing perspectives. Renewable and Sustainable Energy Reviews. 2018. V.82, Part 3. P. 3027 – 3045. https://doi.org/10.1016/j.rser.2017.10.034. (in Eng.)
6.Bulygin V.S. Heat capacity and internal energy of Van der Waals gas.Course textbook General Physics: Moscow M.: MFTI, 2012, 13p. https://mipt.ru/education/chair/physics/S_II/method/VdV.pdf (in Rus.)
7. Avramenko A.A, Tyrinov A.I, Shevchuk I.V. Start-up slip flow in a microchannel with a rectangular cross section // Theoretical and Computational Fluid Dynamics. 2015. V.29(5). P.351-371. DOI: 10.1007/s00162-015-0361-x (in Eng.)
8. Avramenko AA, Tyrinov AI, Shevchuk IV. An analytical and numerical study on the start-up flow of slightly rarefied gases in a parallel-plate channel and a pipe. Physics of Fluids. 2015. V.27(4):042001. https://doi.org/10.1063/1.4916621 (in Eng.)
9. Avramenko A.A., Kuznetsov A.V. Flow in a curved porous channel with a rectangular cross section. Journal of Porous Media. 2007. V.11(3). P.241-246. DOI: 10.1615/JPorMedia.v11.i3.20 (in Eng.)
10. Avramenko A.A., Shevchuk I.V., Harmand S., Tyrinov A.I. Thermocapillary instability in an evaporating two-dimensional thin layer film. International Journal of Heat and Mass Transfer. 2015. V.91. P. 77 - 88. DOI:10.1016/j.ijheatmasstransfer.2015.07.06 (in Eng.)
11. Avramenko A.A., Kuznetsov A.V.The onset of bio‐thermal convection in a suspension of gyrotactic microorganisms in a fluid layer with an inclined temperature gradient. International. Journal of Numerical Methods for Heat & Fluid Flow. 2010. V.20(1). P.111 – 129. DOI: 10.1108/09615531011008154 (in Eng.)
12. Avramenko А.А., Shevchuk I.V., Abdallah S., Blinov D.G., Harmand S., Tyrinov A.I. Symmetry analysis for film boiling of nanofluids on a vertical plate using a nonlinear approach .Journal of Molecular Liquids. 2016. V.223. P.156-164. DOI :10.1016/j.molliq.2016.08.038 (in Eng.)
13. Avramenko A.A., Shevchuk I.V., Kovetskaya M.V. An Analytical Investigation of Natural Convection of a Van Der Waals Gas over a Vertical Plate. Fluids. 2021. V.6(3): 121. https://doi.org/10.3390/fluids6030121 (in Eng.)
14. Squire H. B. “Integral solution,” in Modern Developments in Fluid Dynamics, vol. 2, S. Goldstein ed., Dover, New York, USA: Academic press, pp. 641–643, 1965 (in Eng.)
15.Eckert E.R.G., Drake R.M. Heat and Mass Transfer. McGraw Hill, New York 1959 (in Eng.)

Abstract views: 25
PDF Downloads: 23
Published
2022-03-22
How to Cite
Avramenko, A., Kovetska, Y., Dmitrenko, N., Skitsko, O., & Plakhotnia, L. (2022). HEAT TRANSFER AT NATURAL CONVECTION OF VAN DER WAALS GAS. Thermophysics and Thermal Power Engineering, 44(1), 5-13. https://doi.org/https://doi.org/10.31472/ttpe.1.2022.1
Section
Heat and Mass Transfer Processes and Equipment, Theory and Practice of Drying