• L.Yu. Avdieieva Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • V.Yu. Pavlyk National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
Keywords: cavitation, hydrodynamics, Venturi nozzle, cavitation mixer, emulsion


Emulsions have high efficiency and biological activity, easy absorption, and high digestibility, because they include extracts and parts of medicinal plants, essential oils, vitamin and mineral complexes. They are widely used in medicine, pharmaceutical, chemical and food industries, as well as agriculture. At the same time, the treatment of liquid multicomponent heterogeneous systems to obtain stable micro- and nano emulsions is a long and energy-intensive process.

Modification or replacement of obsolete energy-intensive technological processes and equipment to increase their efficiency is one of the main problems of modern production.

Various cavitation devices have proven to be highly efficient and productive with low energy consumption when producing high-quality liquid emulsion systems.

Streaming hydrodynamic cavitation devices of the static type based on the Venturi tube are reliable high-performance equipment and are widely used for the formation of microemulsions by hydrodynamic cavitation. Although the influence of Venturi tube geometry on the occurrence of hydrodynamic cavitation has been widely studied, there is no clear relationship between cavitation and Venturi tube geometry parameters.

The aim of this work was to study the influence of the geometry features of the Venturi nozzle design in cavitation mixers on the flow characteristics in the formation of emulsion systems as the basis of light emulsion creams.

The presented results of experimental studies describe the influence of the geometry features of the Venturi nozzle design on the flow characteristics during the formation of emulsion systems in static cavitation mixers. Flow rate, flow velocity, Reynolds number and cavitation number are defined among the characteristics of hydrodynamics of the flow. The quality of the obtained emulsions is evaluated by dispersion and stability of the emulsion over time.


1. Emulsions and emulsion stability /Ed.J.Sjöblom. CRC Press Taylor& Francis Group. 2006. 669 р. DOI:10.1201/9781420028089.
2. Drapala, K. P., Auty, M. A.,Mulvihill E.. Influence of lecithin on the processing stability of model whey protein hydrolysate‐based infant formula emulsions. International Journal of Dairy Technology. 2015.68(3), P.322-333. DOI:10.1111/1471-0307.12256
3. Hakansson А. Emulsion Formation by Homogenization: Current Understanding and Future Perspectives Food Science Technology. 2019. 10:239–258. DOI: 10.1146/annurev-food-032818-121501
4. Bylund G. Dairy processing handbook Tetra Pak. 2015. 486 p. ISBN-10: 9176111326
5. Guan X., Yang N., Nigam K. Prediction of Droplet Size Distribution for High Pressure Homogenizers with Heterogeneous Turbulent Dissipation Rate. Industrial&Engineering Chemistry Research. 2020, 59 (9), 4020-4032. DOI:10.1021/acs.iecr.9b04615
6. Zhang Sh.B., Zhang Sh. Y., Peng Y. X. Comparative study of high-intensity ultrasound and high-pressure homogenization on physicochemical properties of peanut protein-stabilized emulsions and emulsion gels. Journal of Food Process Engineering.2021. DOI: 10.1111/jfpe.13710.
7. Долінський А.А., Авдєєва Л.Ю., Макаренко А.А. Кавітаційні технології для виробництва нанопрепаратів. Київ: «Наук. Думка», 2020, 112 с.
8. Adrien M., Bronson B.M., Xu Zh., Liu Q. Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles. Minerals Engineering. V. 132, 2019, P. 268-274. DOI:10.1016/j.mineng.2018.11.001
9. Долінський А.А. Явище гідродинамічної кавітації як дієвий механізм диспергування при реалізації дискретно-імпульсного введення енергії / А.А. Долінський, Л.Ю. Авдєєва, Е.К.Жукотський, А.А.Макаренко// Промышленная теплотехника, 2015.-Т.37, №6.-С.16-21.
10. Yegin B. Lipid nanocapsule size analysis by hydrodynamic chromatography and photon correlation spectroscopy. International Journal of Pharmaceutics. 2006. № 320 (1-2). Р. 165–170. DOI: 10.1016/j.ijpharm.2006.04.014.
11. Mossaz S., Colombet D., Ayela F. Hydrodynamic cavitation of binary liquid mixtures in laminar and turbulent flow regimes. Experimental Thermal and Fluid Science. V. 80. 2017. P. 337-347. DOI:10.1016/j.expthermflusci.2016.08.001.

Abstract views: 13
PDF Downloads: 15
How to Cite
Avdieieva, L., & Pavlyk, V. (2022). THE STUDY OF THE INFLUENCE OF HYDRODYNAMIC CAVITATION EFFECTS ON THE PROPERTIES OF COMPLEX MULTICOMPONENT SYSTEMS. Thermophysics and Thermal Power Engineering, 45(2), 21-28. Retrieved from