DEVELOPMENT OF TURBINE BLADE FILM COOLING SYSTEMS (the review) (огляд)


  • А.А. Khalatov Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • І.І. Borisov Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
  • S.B. Kulishov Industrial Machinery Manufacturing «Zorya-Mashproekt»
Keywords: gas turbine blades, thermal protection, film cooling, development trends

Abstract

The analysis of trends in the development of film cooling systems for gas turbine blades is carried out. The historical aspects and chronology of the development of film cooling technologies are presented.  Modern and promising schemes are considered, their comparative analysis is made. It is shown that the main way of the improvement of cooling systems is the use of shaped and anti-vortex openings, as well as the supply of coolant into recesses of various shapes. The effect of the conditions of coolant entry into the blowing hole from the internal channel is analyzed.   

References

1. Rao A. Advanced Brayton cycles. In: Gas Turbine Handbook. Chapter 1.3.2, p.115-121. URL: https://netl.doe.gov/sites/default/files/gas-turbine-handbook/1-3-2.pdf].
2. James P. Downs, Kenneth K. Landis. 2009, Turbine cooling systems design – past, presents and future. ASME Turbo Expo 2009. GT2009-59991. 10 p.
3. Eckert, E.R.G. Gas-to-gas film cooling. 1970. J. of Engineering Physics 19, 1091–1101.
4. Goldstein R.J., Eckert E.R., Ramsey J.W. Film Cooling with Injection Through a Circular Bole. Rep. HTL-TR-82, Minnesota Univ. (NASACR-546041), May 14, 1968.
5. Goldstein R.J., Eckert E.R., Eriksen V.L., Ramsey J.W. Film Cooling Following Injection Through Inclined Circular Tubes. Rep. HTL-TR-91, Minnesota Univ. (NASA CR-72612), Nov. 1969.
6. Ramsey J. W., Goldstein, R. J. Interaction of' a Heated Jet -with aDeflecting Stream. Rep. HTL-TR-92, Minnesota Univ. (NASA CR-72613), Apr. 1970.
7. NASA Turbine Cooling Research Status Report TMX-2384. 1971, by JohnN. B. Livingood, HermanH,. Ellerbrock, and Albert Kaufman, Lewis Research Center, 83 p.
8. Bunker R.S. Evolution of turbine cooling. (2017). ASME Paper No GT2017-63205.
9. Li Xu, Sun Bo, You Hongde, Wang Lei Evolution of Rolls-Royce air-cooled turbine blades and feature analysis Procedia Engineering 99. 2015. 1482 – 1491.
10. Albert, J. E., and Bogard, D. G., 2013, “Measurements of adiabatic film and overall cooling effectiveness on a turbine vane pressure side with a trench,” ASME J. Turbomach., 135(5), p. 051007.
11. Heidmann J.D. A numerical study of anti-vortex film cooling designs at high blowing ratio. Proceedings of ASME Turbo Expo–2008. – GT2008-50845. – 11 p.
12. Bunker R. Gas turbine: moving from macro to micro cooling. 2013. ASME Turbo Expo 2013. GT2013-94277. 17 p.
13. Bunker R.S. A Review of Shaped Hole Turbine Film-Cooling Technology. ASME Journal of Heat Transfer. – 2005. – Vol. 127. – pp. 441–453.
14. Colban W. Thole W., D. Bogard D. A film cooling correlation for shaped holes on a flat-plate surface. (2011) J. оf Turbomachinery, V. 133, №1. 011002.
15. Town J., Straub D, Black J, Thole K.A, Shih T. State-of-the-Art Cooling Technology for a Turbine Rotor Blade. J. of Turbomachinery 140(7), (2018), 071007-1.
16. Lee K-D., Kim S–N., K-Y. Kim K–Y.(2012) Numerical analysis of film cooling performance and optimization for a novel shaped film-cooling hole. ASME Paper GT2012-68529.
17. Kusterer K., Elyas A., Sugimoto T., Tanaka R., Kazari M., Bohn D. 2011. The NEKOMIMI cooling technology: cooling holes with ears for high-efficient film cooling. ASME Paper GT2011-45524.
18. Abraham S., Navin A.R., Ekkad S.V. Film cooling study of novel orthogonal entrance and shaped exit hole (2009) ASME Paper GT2009-60003.
19. Issakhanian E.S., Elkins C.J., J.K. Eaton J.K. 2015. Film cooling effectiveness improvements using NON-diffusing oval hole. ASME Paper GT2015-42243
20. Lu Y. Effect of hole configuration on film cooling from cylindrical inclined holes for the application to gas turbine blades (2007). PhD Thesis, Lousiana State University. – 2007.– 109 p.
21. Pat.US Bell–shaped fan cooling holes for turbine airfoil. Lee C.–P. No 7 374 401, 20.05.2008, filed on 01.05.2005. – 14 p
22. Liu J.S. et al. Enhanced film cooling effectiveness with new shaped holes (2010) ASME Paper GT2010–22774.
23. Lu Y. Dhungel A., S.V. Ekkad S.V., Bunker R.S. 2009. Film cooling measurements for cratered cylindrical inclined holes. J. of Turbomachinery. 131(1), 011005.
24. Khalatov А.А., Borisov I.I., Dashevskyy Y.Y., Reznik S.B. Heat transfer and hydrodynamics in centrifugal fields. V. 10. Advanced film cooling schemes. – Kyiv: Politechnika – 2016. – 238 p. (Rus)
25. Khalatov A., Shi-Ju E., Wang D., Borisov I. 2020. Film cooling evaluation of a single array of triangular craters. Int. J. of Heat and Mass Transfer. V. 159. 120055.
26. Fu J.L., Bai L.C., Zhang C., Ju P.C. 2019. Film cooling performance for cylindrical holes embedded in contoured craters: effect of the crater depth. Journal of Applied Mechanics and Technical Physics, 60(6). 1068–1076.
27. Bai L.C., Zhang C., Tong Z.T., Ju P.F. Optimization of geometric parameters of cylindrical film cooling hole with contoured craters to enhance film-cooling effectiveness – in press.
28. Lu Y., Dhungel A., Ekkad V., Bunker R.S. 2009. Effect of trench width and depth on film cooling from cylindrical holes embedded in trenchesю J. of Turbomachinery. 131(1), 011003.
29. BoualemA., Grine M., Azzi A. Numerical investigation of V-shaped trench on film cooling performance – in press.
30. Wu X., Du X., Chunhua Wang C. 2021. Study on Film Cooling Performance of Round Hole Embedded in Different Shaped Craters and Trenches Aerospace. 8(147).
31. Davidson F.D., Kistenmacher D., Bogard D. Film cooling with a thermal barrier coating: round holes, craters and trenches // ASME paper GT2012-70029
32. Kusterer K.Bohn D., Sugimoto T.,Tanaka R. Double-jet ejection of cooling air for improved film cooling (2006)ASME PaperGT2006-90854.
33. Heidmann J.D., Ekkad S.V.A Novel Anti–vortex turbine film cooling holes concept (2007) ASME Paper GT2007-27528.
34. Dhungel A., Lu, Y. Phillips W., Heidmann J.D., Ekkad S.V. Film cooling from a row of holes supplemented with anti-vortex holes (2007) ASME Paper GT2007-27419.
35. Chi Z., Han C., Li X., Ren J., H. Jiang H. Geometrical optimization and experimental validation of a tripod film cooling hole with asymmetric side holes (2014) ASME Paper GT2014-25211.
36. Ely M.J., Jurban B.A. A Parametric study on the effect of sister hole location on active film cooling flow control. Proceedings of ASME Turbo Expo–2010. – GT2010-22060. – 11 p.
37. Park. S., Jung E. Y., Kim S.H., Sohn H-S., Cho H.H. Enhancement of film cooling effectiveness using backward injection holes. Proceedings of ASME Turbo Expo–2015. –GT2015-43853.–9 p.
38. Jiaxu Yao, Jin Xu, Ke Zhang, Jiang Lei, Wright L.M. Effect of density ratio on film-cooling effectiveness distribution and its uniformity for several hole geometries on a flat plate. 2019. Journal of Turbomaсhinery, Vol. 141. 051008-1.
39. Na S, Shih TIP. Increasing adiabatic film-cooling effectiveness by using an upstream ramp. J. Heat Transfer 2007;129(4):464–71.
40. Zhou W, Hu H. Improvements of film cooling effectiveness by using barchan dune shaped ramps. 2016. Int. J. Heat Mass Transfer, 103, 443–56
41. Grine M,, Boualem Kh., Dellil1 A.Z., Azzi A. 2020. Improving adiabatic film-cooling effectiveness spanwise and lateral directions by combining BDSR and anti-vortex designs. Thermophysics and Aeromechanics, 27(5), 751–760.
42. Zhang С., Bai L., Tong Z., Khalatov A. 2021. Film cooling performance for the cratered film-cooling holes with various coolant crossflow orientations. Numerical Heat Transfer, Part A: Applications. DOI: 10.1080/10407782.2021.1969801.
43. Jones F.B., Fox D.W., Bogard D.V. Experimental and computational investigation of shaped film cooling holes designed to minimize inlet separation. ASME Paper GT2020-15561.

Abstract views: 18
PDF Downloads: 18
Published
2022-08-01
How to Cite
KhalatovА., BorisovІ., & Kulishov, S. (2022). DEVELOPMENT OF TURBINE BLADE FILM COOLING SYSTEMS (the review) (огляд). Thermophysics and Thermal Power Engineering, 45(2), 70-83. Retrieved from http://ihe.nas.gov.ua/index.php/journal/article/view/493