HEAT AND MASS TRANSFER PROCESSES IN CYLINDRICAL BURNER DEVICES WITH NICHE CAVITIES


  • N.M. Fialko Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Zhelyabova str., Kiev, 03057, Ukraine
  • Ju.V. Sherenkovskii Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Zhelyabova str., Kiev, 03057, Ukraine
  • N.V. Maison Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Zhelyabova str., Kiev, 03057, Ukraine
  • N.O. Meranova Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Zhelyabova str., Kiev, 03057, Ukraine
  • A.B. Timoshchenko Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Zhelyabova str., Kiev, 03057, Ukraine
Keywords: Cylindrical burner devices, CFDmodeling, niche cavities, turbulence intensity, mixture formation, temperature fields, fuel burning fullness.

Abstract

The results of studies of heat and mass transfer processes in the cylindrical burner with annular rectangular niche cavities on the outside surface of the flame stabilizer are analyzed. The data of computer modeling to establish the patterns of influence of niche cavity on the flow and heat transfer characteristics in considered burners are presented. It is shown that the presence of niches may significantly influence on the intensity of the combustion process, the uniformity degree of the temperature distribution, fullness fuel burning and other parameters.

References

1. Fialko N.M. Matematicheskoe modelirovanie dinamiki techenija I cmeceobrazovanija pri szhiganii topliva v gorelochnyh ustroistvah strujno-nishevogo tipa [Mathematical modeling of flow dynamics and mixture formation at the burning of fuel in the burner devices of jet-niche type] N.M. Fialko, V.G. Prokopov, S.A. Aleshko, Ju.V. Sherenkovskii, N.O. Meranova, M.Z. Abdulin, L.S. Butovskii, P.S. Kokhanenko, N.P. Polozenko. Promyshlennaja teplotehnika [Industrial Heat Engineering]. 2009, No7. P. 24. (Rus.)

2. Abdulin M.Z. Research of hydrodynamic flame stabilizer with cross fuel feed characteristics . M.Z. Abdulin, O.A. Siryi. Scientific Journal of Riga Technical University: Series Power and Electrical Engineering. 2014. No32. PP. 12–18.

3. Sіryi O.A. Doslіdzhennya gіdrodinamіki potoku povіtrya v strumenevo-nishevіy sistemі spalyuvannya paliva [Study of air flow hydrodynamic in the jet-niche system of fuel combustion]. O.A. Sіryi, M.Z. Abdulіn, O.V. Baranyuk. Visnyk natsіonalnogo tehnіchnogo unіversitetu "KhPI" [Bulletin of National Technical University "KhPI".]. Kharkiv, NTU "KhPI», 2016. No9. P.94–100. (Ukr.)

4. Fialko N.M. Matematicheskoe modelirovanie processov techenija I smeseobrazovanija v cilindricheskom gorelochnom ustrojstve [Mathematical modeling of processes of flow and mixture formation in the cylindrical stabilizer burner device] N.M. Fialko, Ju.V. Sherenkovskii, N.V. Mayson, N. O. Meranova, M.Z. Abdulin, L.S. Butovskii, H.P. Polozenko, A.V. Klisch, S.N. Strizheus, A.B. Timoshenko. Vostochno Evropejskii zhurnal peredovih technologij [Eastern European journal of advanced technologies]. 2014. Vol.3, No8 (69). P. 40–44. (Rus.)

5. Fialko N.M. Intensifikacija processov perenosa v gorelochnom ustrojstve s cilindricheskim stabilizatorom plameni [Intensification of the transport processes in the burner device with a cylindrical flame stabilizer/ N.M Fialko, J.V. Sherenkovsky, N.V. Mayson, N. O. Meranova, L.S. Butovskii, M.Z Abdulin, N. P. Polozenko, A.V. Klisch, S.N. Strizheus, A.B. Timoshchenko. Naukovii visnik NLTU Ukraini [Scientific Journal NFTU Ukraine]. 2014. Issue 24.5, P. 136–142. (Rus.)

6. Xingsi Han. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver. Xingsi Han , Aimee S. Morgans. Combustion and Flame. 2015. V. 162, Issue 5. P. 1778–1792.

7. Hua-Guang Li. A Large-Eddy-Simulation Study of Combustion Dynamics of Bluff-Body Stabilized Flames. Hua-Guang Li, Prashant Khare, Hong-Gye Sung & Vigor Yang. Combustion Science and Technology. 2016. V. 188, Issue 6. – P. 924–952.

8. Ottino G. M. Combustion Modeling Including Heat Loss Using Flamelet Generated Manifolds: A Validation Study in OpenFOAM. G. M. Ottino, A. Fancello, M. Falcone, R. J. M. Bastiaans, L. P. H. de Goey. Flow, Turbulence and Combustion, April 2016. V. 96, Issue 3. P. 773–800.

9. Bertrand Naud. Winklinger RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Bertrand Naud, Ricardo Novella, José Manuel Pastor, Johannes F. Combustion and Flame. 2015. V. 162, Issue 4. P. 893–906.

10. Thomas Livebardon. Combining LES of combustion chamber and an actuator disk theory to predict combustion noise in a helicopter engine. Thomas Livebardon, Stéphane Moreau, Laurent Gicquel, Thierry Poinsot, Eric Bouty, Combustion and Flame. 2016. V. 165. P. 272–287.

Abstract views: 80
PDF Downloads: 53
Published
2016-12-20
How to Cite
Fialko, N., Sherenkovskii, J., Maison, N., Meranova, N., & Timoshchenko, A. (2016). HEAT AND MASS TRANSFER PROCESSES IN CYLINDRICAL BURNER DEVICES WITH NICHE CAVITIES. Thermophysics and Thermal Power Engineering, 38(6), 3-13. https://doi.org/https://doi.org/10.31472/ihe.6.2016.01
Section
Heat and Mass Exchange Processes