DYNAMICS ACCELERATING FLOW IN MICROCYLINDER THAT START SUDDENLY ROTATES.


  • A.O. Avramenko Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Zhelyabova str., Kiev, 03057, Ukraine
  • A.I. Tyrinov Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Zhelyabova str., Kiev, 03057, Ukraine
  • N.P. Dmitrenko Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Zhelyabova str., Kiev, 03057, Ukraine
  • O.V. Kravchuk Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Zhelyabova str., Kiev, 03057, Ukraine
Keywords: hydrodynamics, startup flow, microcylinder, friction coefficient, velocity profile.

Abstract

The article presents the results of theoretical research accelerating flow of an incompressible fluid with a sudden onset microcylinder rotation. The problem was solved with the help of two analytical approaches – Fourier analysis method and symmetry. In the course of the analytical solutions the expressions for the calculation of the velocity profile, the coefficient of friction and torque are obtained.

References

1. Gad-el-Hak M. The fluid mechanics of microdevices // J. Fluids Engineering. – 1999. – V. 121 – P. 5-33.

2. Bird G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. – Oxford University Press: 1994. – p. 458.

3. Haile J.M. Molecular dynamics simulation. – New York Wiley and sons. – 1992. – p. 481.

4. G. Karniadakis, A. Beskok, Aluru N. Micro-flows and Nanoflows Fundamentals and Simulation. – New York: Springer. – 1965. – p. 818.

5. Wylie B.J.N. Application of two-dimensional cellular automaton lattice-gas models to the simulation of hydrodynamics. – University of Edinburgh. – 1990. – p. 114.

6. Maxwell J.B. Lattice Boltzmann methods for interfacial wave modelling. – University of Edinburgh. – 1997. – p. 238.

7. Szymansky F. Quelques solution exactes des équations de l’hydrodynamique de fluide visqueux dans le cas d’un tube cylindrique // J. Math. Pures Appl. –1932 V.97, – No.11, – P. 67–107.

8. Müller W. Zum Problem der Anlaufströmung einer Flüssigkeit im geraden Rohr mit Kreisring- und Kreisquerschnitt // ZAMM. – 1936. – No.16, – P. 227-238.

9. Gerberts W. Zur instationären, laminaren Strömung einer inkompressiblen zähen Flüssigkeit in kreiszylindrischen Rohren // Z. angew. Physik. – 1951. – V.3, – P. 267-271.

10. Avramenko A.A., Kuznetsov A.V. Start-up flow in a channel or pipe occupied by a fluid-saturated porous medium // J. Porous Media. – 2009. – V.12, No. 4. – P. 361–367.

11. Schlichting H., Gersten K. Boundary Layer Theory, 8th ed. Berlin. Springer: – 2000. p. 799.

12. Olver P. Applications of Lie Groups to Differential Equations. Berlin. Springer: – 2000. p. 513.Получено 15.08.2016Received 15.08.2016

Abstract views: 31
PDF Downloads: 38
Published
2016-12-20
How to Cite
Avramenko, A., Tyrinov, A., Dmitrenko, N., & Kravchuk, O. (2016). DYNAMICS ACCELERATING FLOW IN MICROCYLINDER THAT START SUDDENLY ROTATES. Thermophysics and Thermal Power Engineering, 38(6), 14-20. https://doi.org/https://doi.org/10.31472/ihe.6.2016.02
Section
Heat and Mass Exchange Processes