THERMOPHYSICAL MODEL OF SELF - OSCILLATIONS IN A RECUPERATIVE HEAT EXCHANGER REFRIGERATOR INDUSTRIAL AGGREGATES


  • B.I. Basok Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Zhelyabova str., Kiev, 03057, Ukraine
  • V.V. Gotsulenko Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Zhelyabova str., Kiev, 03057, Ukraine
Keywords: thermal resistance, self-oscillation, limit cycle, bifurcation, the delay of evaporation.

Abstract

The mechanism of negative resistance in a stream of a liquid is proved at her compression and a supply of heat. Using empirical Teta’s equation, the system of the equations of non-stationary movement of a liquid in devices with the concentrated parameters is received, their periodic self-oscillatory decisions are determined.

References

1. Abramovich G.N. Prikladnaya gazovaya dinamika [Applied Gas Dynamics]. – Moscow: Nauka. – 1969. − 824 p. (Rus.)

2. Raushenbah B.V. Vibratsionnoe gorenie [Vibrating combustion]. – Moscow: Fizmattiz. – 1961. – 500 p. (Rus.)

3. Gotsulenko V.V. Matematicheskoe modelirovanie osobennostej fenomena Rijke [Mathematical modeling of Rijke’s phenomenon] // Matematicheskoe modelirovanie. – 2004. – V. 16, No 9. – P. 23 – 28. (Rus.)

4. Gotsulenko V.V., Gotsulenko, V.N. Teplovoe soprotivlenie kak mehanizm vozbuzhdeniya avtokolebaniy [Thermal resistance as a mechanism of excitation of oscillations]. // Sbornik nauchnyih trudov Dneprodzerzhinskogo gosudarstvennogo tehnicheskogo universiteta. – 2009. – V. 1 (11). – P. 95 − 100. (Rus.)

5. Gotsulenko V.V., Basok B.I. Upravlenie avtokolebaniyami koleblyushhegosya plameni pri odnovremennom dejstvii mexanizmov ix vozbuzhdeniya [Control self-oscillations of the oscillating flame under the simultaneous action of their excitation mechanisms] // Promyshlennaya teplotekhnika. − 2009. − V. 31, No 3. − P. 101 − 107. (Rus.)

6. Basok B.I., Gotsulenko V.V. Periodicheskie dvizheniya teplonositelya v modelyax elementov parogeneratorov [Periodic movements of coolant in the steam generator model elements] // Promyshlennaya teplotekhnika. − 2010. − V.32, No 4. − P. 33 − 42. (Rus.)

7. Merkin D.R. Vvedenie v teoriyu ustojchivosti dvizheniya [Introduction to the theory of stability of motion]. – Moscow: Nauka. – 1971. – 312 p. (Rus.)

8. Strelkov S.P. Vvedenie v teoriyu kolebanij [Introduction to the theory of oscillations]. – Moscow: Nauka. – 1964. − 437 p. (Rus.)

9. Gershuni G.Z. Gidrodinamicheskaya neustojchivost. izotermicheskie techeniya [Hydrodynamic instability. Isothermal flow] // Sorosovskij obrazovatelnyj zhurnal. – 1997. – No 2. – P. 99 – 106. (Rus.)

10. Zarembo I.K. Vvedenie v nelinejnuyu akustiku [Introduction to nonlinear acoustics]. – Moscow: Nauka. – 1966. – 519 p. (Rus.)

11. Ginzburg I. P. Prikladnaya gidrogazodinamika [Applied fluid dynamics]. – Leningrad.: izd-vo Leningradskogo un-ta. – 1958. – 338 p. (Rus.)

12. Basok B.I., Gotsulenko V.V. Raschet parametrov avtokolebanij v vertikalnoj kamere goreniya vozduxonagrevatelya domennoj pechi pri neustojchivom gorenii [Calculating the parameters of self-oscillations in the vertical combustion chamber of the blast-furnace air heater
during unstable combustion] // Teploenergetika. – 2015. – No 1. – P. 59 – 64. (Rus.)

Abstract views: 53
PDF Downloads: 73
Published
2016-02-21
How to Cite
Basok, B., & Gotsulenko, V. (2016). THERMOPHYSICAL MODEL OF SELF - OSCILLATIONS IN A RECUPERATIVE HEAT EXCHANGER REFRIGERATOR INDUSTRIAL AGGREGATES. Thermophysics and Thermal Power Engineering, 38(2), 26-32. https://doi.org/https://doi.org/10.31472/ihe.2.2016.03
Section
Heat and Mass Exchange Apparatus